Whittle : EXTRAGALACTIC ASTRONOMY

1: Preliminaries	6: Dynamics I	11: Star Formation	16: Cosmology
2 : Morphology	7 : Ellipticals	12 : Interactions	17 : Structure Growth
3 : Surveys	8: Dynamics II	13 : Groups \& Clusters	18: Galaxy Formation
4 : Lum. Functions	9: Gas \& Dust	14 : Nuclei \& BHs	19 : Reionization \& IGM
5 : Spirals	10 : Populations	15 : AGNs \& Quasars	20 : Dark Matter

1. HISTORY \& PRELIMINARIES

(1) Introduction

Let's start this course with the suggestion that the subject is of fundamental importance.
For reasons not yet fully understood, matter in the universe is organized into three basic structures:

- Atoms
- Stars
- Galaxies -- the subject of this course

Our understanding of each has grown in rough synchrony :

- ~1750-1850 : recognition of basic existance
- ~1850-1930 : recognition of basic properties
- ~1930 - present : deeper understanding (structure, creation, evolution, sociality)

It is probably fair to say that our understanding of galaxies has lagged behind atoms and stars, mainly because they are difficult to observe, being so faint.

- atoms \& stars : understanding now mature
- galaxies : becoming mature; now $\pm 30 \mathrm{yrs}$ is a golden time.
\rightarrow currently fertile area (astronomy is prominent amongst physical sciences)
\rightarrow your careers will witness significant growth
\rightarrow these notes will be of limited use when you teach the course, in ~ 20 yrs.
Let's first look briefly at some historical hightlights.

(2) Discovering Galaxies : Ours \& Others

(a) Early Aims

- Early thinking (before 1923) focussed on two main questions :
- What is the Milky Way (Latin : Via Lactea)
- initially: what is its shape and where is the sun
- later : what is its size and internal motion
- What are the Nebulae (Latin : clouds)
- initially : use "large" telescopes to find, catalog, and describe them
- later : are they unresolved star groups, or genuinely nebulous (gaseous)
- finally : are they internal to the MW, or external "island universes"
- As telescope apertures increased, the methods developed :
- Visual \rightarrow photographic \rightarrow visual spectra \rightarrow photographic spectra
- The path of discovery was NOT linear, with discussion often polarized and ambiguous.
- Here are some simple time-line sketches identifying the key people/work

(b) Before 1850 : Search \& Discovery

- 1610 : Galileo Galilei (Italian) uses early telescopes He realizes the Milky Way is composed of many stars [image]
- 1750 : Thomas Wright (English) : [image]

Publishes "An Original Theory of the Universe" in 1750
giant spherical shell; we see tangent plane; God @ center
stars orbit around, preventing them falling onto God

- 1755 : Immanuel Kant (German) : [image]
writes: "General Natural History \& Theory of the Heavens"
(1) rejects spherical shell
(2) MW like huge solar system, rotating; origin from rotating cloud.
(3) stars far from plane on different orbits

(4) disks (like MW) project to ellipses
(5) oval nebulae (seen by de Maupertius) = "Island Universe"
\rightarrow remarkably precient, but not widely accepted through 1800s
- 1780s : William Herschel (English) : [image]
star counts $\rightarrow \mathrm{MW}=$ flat disk with sun @ center
no size estimate
ultimately recognizes wrong assumptions \& retracts
- 1781 : Charles Messier (French) : [image]
completes first catalog of nebulae (109)
- 1770-1810 : William \& Caroline \& John Herschel (English) : [image]
all-sky survey $\rightarrow 2500$ nebulae
used 18" (20 foot) reflecting telescope, diurnal sweeps
extended to southern skies by son John at Cape of Good Hope (1834-9)
some resolve into stars (clusters) others dont (gas?)
speculation : uniform distribution of stars will gravitationally cluster
- 1845 : William Parsons (3 ${ }^{\text {rd }}$ Earl of Rosse) : [image]

English Lord resident in central Ireland : Birr Castle
36" then 72" (Leviathan of Parsonstown; largest until 100" Mt Wilson, 1917)

spiral structure (eg M51, M33, M101)
some have stars and gas (eg M42) \rightarrow supports Kant's rotation idea
1840s potato famine stops work; never achieves its potential
(c) 1850-1925: The Great Debates

- 1864-68 : William Huggins (English) : [image]
telescopic visual spectra of nebulae
$1 / 3$ emission lines (gaseous); $2 / 3$ continuous (stellar)
- 1888 : John Dreyer (Danish) [image] working at Birr Castle, compiles New General Catalog (NGC) : 7840 nebulae Index Catalog (IC) : 5086 more
- 1900s : James Keeler and Herber Curtis (USA, Lick) use photography

36" Crossley reflector @ Lick : [image]
estimates $\sim 120,000$ nebulae accessible; $\sim 50 \%$ are spiral

new MW so big, inconceivable universe so much bigger van Maanen rotation rules out distant spirals Curtis:
doubted Shapley's MW size
range in size $(0.01-2 \mathrm{deg}) \rightarrow$ range in distance (1000 x more than MW)
Novae in M31 $\rightarrow 100 \mathrm{kpc}$ away and size of Kapteyn's MW
spectra show large doppler shifts, yet no proper motions
some edge on spirals have dust lanes \rightarrow similar to MW (zone of avoidance) \rightarrow external

- 1923 : Edwin Hubble (USA, Mt Wilson) : uses the new 100" [image]
finds Cepheids in M31 $\rightarrow 300 \mathrm{kpc}$ (now, 770 kpc) \rightarrow external galaxy
(centennial review of Hubble's career by Sandage : [o-link])
(d) 1925-1950 : Expanding Horizons
- 1927 : Bertil Lindblad (Sweedish) and Jan Oort (Dutch) : [image]

Lindblad predicts differential rotation near sun; Oort find it supports Shapley's MW with sun off-center (against Kapteyn's MW) however, derives smaller size than Shapley

- 1929 : Edwin Hubble and Milton Humason (USA, Mt Wilson) [image] Finds redshift-distance relation (Hubble's Law) (Original paper: [o-link]) already expected from de Sitter's solutions to GR looked for by others; Hubble used distance ladder, including Cepheids 1931 - includes many more galaxies $\mathrm{H} \sim 530 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \rightarrow 2 \mathrm{Gyr}$ age (less than earth !?)
- 1930 : Robert Trumpler (USA, Lick) :
compares sizes and CM diagrams of open clusters
concludes absorption pervasive ($\sim 0.5 \mathrm{mag} / \mathrm{kpc}$, close to correct)
nail in the coffin of Kapteyn's Milky Way
- 1936 : Hubble : publishes galaxy classification (tuning fork) [image] uses names (early, late) influenced by Jean's theory of gravitational collapse eg E's = large gas cloud, evolves into spiral

- 1930s : Fritz Zwicky (Swiss/USA, Cal Tech) : [image]
measures galaxy velocities in Coma;
infers dark matter needed if clusters are bound no one believes him
- 1944 : Walter Baade (German/USA, Mt Wilson) : [image] observes Spiral bulges \& Ellipticals (war time black-outs help) uncovers stellar populations :
- Pop I : blue supergiants in disks
- Pop II : red giants in bulges and Ellipticals
(e) 1950 - Present : Modern Developments
- 1952 : Baade : uses 200" to recalibrate Cepheid P-L relation depends on Pop I or II; previous work used wrong relation
\rightarrow all distances doubled
\rightarrow M31 is similar in size to MW
\rightarrow Universe doubles in size (!)
- 1962 : Eggen, Lynden-Bell \& Sandage (ELS) : [image]

Collapse model for formation of MW galaxy
Accounts for position/kinematic/metallicity gradients Importance of ELS picture still debated

- 1963 : Maartin Schmidt (German/USA, Cal Tech) : [image] Discovers Quasars (identifies redshift of 3C 273).
- 1965 : Arno Penzias \& Robert Wilson (USA, Bell Labs) : [image] Discover Cosmic Microwave Background (CMB) Strong support for Hot Big Bang model
- 1972 : Leonard Searle \& Wal Sargent (USA, Cal Tech) : measure 24% He basiline in low metallicity Dwarfs consistent with Big Bang nucleosynthesis
- 1970s : Vera Rubin et al. (USA, Carnegie) : [image]
infers dark matter from spiral rotation curves inspires Cold Dark Matter (CDM) models of 80s-90s
- 1978 : Len Searle \& Robert Zinn (USA, Cal Tech) :

Abundance analysis of MW Globular Clusters: infer range of ages Suggest MW halo built up by accretion of fragments after main formation

- 1980 : Alan Guth \& Alexei Starobinski (USA; USSR) : [image] Independently conceive of early period of extremely rapid, accelerated expansion. Guth calls this "inflation": solves several deep problems.
Provides natural explanation for creation of everything, and launching the expansion.

- 1992 : COBE (NASA): [image]
measures stunningly accurate black body spectrum
finds slight $\left(10^{-5}\right)$ anisotropies in CMB \rightarrow pregalactic structure
- 1996 : HST's HDF (NASA): [image]
galaxies down to 29^{m}; out to $\mathrm{z} \sim 3$; total $\sim 10^{10}$
young galaxies visibly different
early star formation rate is high ("Madau" plot)
- 1998 : High-z SN Projects (USA, Berkeley \& Harvard): [image]

Two groups use Type Ia SN as standard candles out to $\mathrm{z} \sim 1$
Both find evidence for non-zero cosmological constant (universe accelerating)

- 2003 : 2dF (\& SDSS) Galaxy Surveys (UK/Australia \& USA): [image]

The first of the large scale galaxy redshift surveys is completed (2 dF)
250,000 galaxy redshifts out to $\mathrm{z} \sim 0.1$ allow detailed analysis of large scale structure.

SDSS completed later (800,000 galaxy redshifts) but with more detailed information.

- 2003 : WMAP (NASA) : [image]

CMB power spectrum measured; includes accoustic peaks $1,2,(\sim 3)$
inspires concordance model with "high" accuracy (few \%)
combines : WMAP; SN-1a; 2dFGRS; HST-H ${ }_{0}$; BBNS; to find : [image]

- flat geometry
- 70% Dark Energy; 26\% Dark Matter; 4\% Baryonic Matter
- age 13.7 Gyr
- initial fluctuation spectrum is power law, index -1 (consistent with inflation)

Next Prev Top

(3) Preliminaries

Before delving into the subject proper, there are a few preliminaries worth introducing.

(a) Basic Scales

The following ASTRO-101 type diagrams remind us of the relative size of galaxies and our visible horizon

- Remind yourself, using simple scale models, just how BIG the Universe is: [image].

(b) Galaxies are Multicomponent Systems

- Three constituents, with rough mass ratio 1/10/100 : Gas / Stars / Dark Matter

The first two have complex identity :

- Gas: different phases; dynamics; composition; (like "weather")
- Stars: different ages; locations; kinematics; metallicities; (like "cars")

The third is simpler but more enigmatic:

- DM: collisionless "gas" (of WIMPs?); huge; \sim smooth; centrally concentrated
- Several components, with varying prominence depending on galaxy type [image].
- Nucleus: dense; star formation; supermassive black hole
- Bulge: spheroidal; mixed ages; kinematically "hot" \& little rotation
- Disk: gas \& stars; younger; star formation; spiral arms; kinematically "cold" \& rotates
- Halo: low density; GCs present; old; Dark Matter dominates;

Note : Dark Matter dominates on large scales only bulge \& disk dynamics determined by stars \& gas alone

(c) Colors and Spectra

- A montage of SDSS galaxies shows a limited range of colors: blue -- red [image]

Statistical analysis suggests the color distribution is roughly bimodal [image].
Crudely speaking:
blue $=$ younger population
red $=$ older population (actually, more like yellow/orange)

- This can be understood in terms of stellar evolution:

Following an episode of star formation, the main sequence "erodes" downwards. [image].
Young population: light is dominated by higher mass main sequence stars.
Older population: light is dominated by red giants.
(In both cases these are a minor but luminous sub-population.)

- Spectra show in more detail these population differences

Star spectra primarily follow the spectral type [image].
Galaxy spectra show mixed populations [image].

- Analysis of these spectra can reveal many properties:
- population mix of stars
- current star formation (e.g. emission lines)
- metallicity (fraction of heavy elements, i.e. beyond He)
- kinematics of gas and stars: rotation and dispersion.

(d) Useful Units

Calculations of galaxy properties are greatly simplified with sensible units (see also: Toolbox). Rather than "mks" or "cgs" for length/mass/time, we can use:

```
"psm" : parsec, solar mass, Megayear : pc, M
```

There are a number of nice features to this system:

- (1) Velocity in psm units, $\mathrm{pc} / \mathrm{Myr}$, is the same as $\mathbf{~ k m} / \mathbf{s}$ (within $2 \% ; 1 \mathrm{pc} / \mathrm{Myr}=0.9778 \mathrm{~km} / \mathrm{s}$) (recall the pnemonic: "a kilometer per second is a parsec in a million years ")
- (2) Newton's constant: $\mathbf{G}=\mathbf{4 . 5 0} \times \mathbf{1 0}^{-\mathbf{3}}\left(4.49846 \times 10^{-3}\right)$ its units are: $\left(\mathrm{pc}^{3} / \mathrm{M}_{\odot}\right) \mathrm{Myr}^{-2} \equiv \beta^{1} \mathrm{Myr}^{-2} \approx(\mathrm{~km} / \mathrm{s})^{2} \mathrm{pc} \mathrm{M}_{\odot}^{-1}$
- (3) Equations, such as $M=R V^{2} / G$, directly accept and yield observational values
- (4) Densities, ρ_{psm}, are in $\mathbf{M}_{\odot} / \mathbf{p c}^{-3}=6.76 \times 10^{-23} \mathrm{gm} \mathrm{cm}^{-3}=40.4 \mathrm{~m}_{\mathrm{p}} \mathrm{cm}^{-3}=3.60 \times 10^{6} \mathrm{~h}^{2} \rho_{\text {crit }}$
- (5) Frequencies, Myr^{-1}, are also velocity gradients: $\mathbf{k m} / \mathbf{s} / \mathbf{p c}$
- (6) Crossing/collapse times: $\mathrm{R}(\mathrm{pc}) / \mathrm{V}(\mathrm{km} / \mathrm{s})=1 /(\mathrm{G} \rho)^{1 / 2}$ are in Myr.

Some examples illustrate psm units, and introduce basic galaxy properties : (see homework for further examples).

- Estimate the mass interior to the sun's orbit (R~8kpc; V~220 km/s)

$$
\text { use (3): } \mathrm{M} \sim \mathrm{RV}^{2} / \mathrm{G} \rightarrow 8000 \times 220^{2} / 4.5 \times 10^{-3} \sim 8.6 \times 10^{10} \mathrm{M}_{\odot}
$$

- Whats the density at the galactic center, where $\mathrm{V} \sim 100 \mathrm{~km} / \mathrm{s} @ \mathrm{R} \sim 1 \mathrm{pc}$?

$$
\text { use (6) }: \mathrm{R}^{2} / \mathrm{V}^{2}=1 /(\mathrm{G} \rho)
$$

$$
\rightarrow \rho=\mathrm{V}^{2} /\left(\mathrm{GR}^{2}\right)=100^{2} /\left(4.5 \times 10^{-3} \times 1^{2}\right)=2.2 \times 10^{6} \mathrm{M}_{\odot} / \mathrm{pc}^{-3}
$$

- What's the Schwarzchild radius of a $10^{8} \mathrm{M}_{\odot}$ black hole ?

$$
\text { use } \mathrm{R}_{\mathrm{s}}=2 \mathrm{GM} / \mathrm{c}^{2}=2 \times 4.5 \times 10^{-3} \times 10^{8} /\left(3 \times 10^{5}\right)^{2}=1.0 \times 10^{-5} \mathrm{pc}=2 \mathrm{AU}
$$

- What's the Hubble time for $\mathrm{H}_{\mathrm{o}}=75 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$?

$$
\begin{aligned}
& \text { use }(5): \mathrm{t}_{\mathrm{H}}(\mathrm{Myr})=1 /(75 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc})=1 \mathrm{Mpc} /(75 \mathrm{~km} / \mathrm{s}) \\
& =10^{6} / 75=1.33 \times 10^{4} \mathrm{Myr}=13.3 \mathrm{Gyr}
\end{aligned}
$$

There are a few extensions to the psm system which can, at times, be useful:

- psm energy units: peu $\left(\mathrm{M}_{\odot} \mathrm{pc}^{2} \mathrm{Myr}^{-2}\right)=1.89 \times 10^{36}$ Joules
- psm luminosity units: plu (peu/Myr) $=5.97 \times 10^{22} \mathrm{Watt}=1.56 \times 10^{-4} \mathrm{~L}_{\odot}$
- mass/luminosity units: $\mathrm{M}_{\odot} / \mathrm{plu}=3.33 \times 10^{7} \mathrm{~kg} /$ Watt $=6400\left(\mathrm{M}_{\odot} / \mathrm{L}_{\odot}\right)$
- linear momentum: pmu $\left(\mathrm{M}_{\odot} \mathrm{pc} / \mathrm{Myr} \approx \mathrm{M}_{\odot} \mathrm{km} / \mathrm{s}\right)=1.85 \times 10^{33} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
- angular momentum: pamu $\left(\mathrm{M}_{\odot} \mathrm{pc}^{2} \mathrm{Myr}^{-1} \approx \mathrm{M}_{\odot} \mathrm{km} / \mathrm{s} \mathrm{pc}\right)=5.71 \times 10^{49} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
- force (momentum flux): pfu $\left(\mathrm{M}_{\odot} \mathrm{pc} / \mathrm{Myr}^{2} \approx \mathrm{M}_{\odot} \mathrm{km} / \mathrm{s} / \mathrm{Myr}\right)=5.86 \times 10^{19} \mathrm{~N}$
- acceleration: pau $\left(\mathrm{pc} / \mathrm{Myr}^{2} \approx \mathrm{~km} / \mathrm{s} \mathrm{Myr}^{-1}\right)=3.09 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{-2}$

A few more examples help illustrate:

- What's the gravitational luminosity of a galaxy merger ($\mathrm{M} \sim 10^{11} \mathrm{M}_{\odot}$ in $\left.\mathrm{R} \sim 10 \mathrm{kpc}\right)$

Use (6) for collapse time $\sim\left(\mathrm{G}^{\rho}\right)^{-1 / 2} \sim\left(4.5 \times 10^{-3} \times 10^{11} / 20000^{3}\right)^{-1 / 2} \sim 130 \mathrm{Myr}$
Energy of collapse $\sim \mathrm{GM}^{2} / \mathrm{R} \sim 4.5 \times 10^{15}$ peu
Gravitational luminosity $=3.5 \times 10^{13} \mathrm{plu}=5.4 \times 10^{9} \mathrm{~L}_{\odot}$
(much less than $\sim 10^{11} \mathrm{~L}_{\odot}$ from typical star formation).

- What's the ejection velocity of a $10 \mathrm{M}_{\odot}$ supernova envelope of energy $10^{46} \mathrm{~J}$?

Energy is $\sim 5 \times 10^{9} \mathrm{peu} \sim 1 / 2 \mathrm{MV}^{2} \rightarrow \mathrm{~V} \sim 32,000 \mathrm{~km} / \mathrm{s}$

- What's the mechanical luminosity and force of a $1000 \mathrm{~km} / \mathrm{s}$ AGN jet carrying $10 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$?
$\mathrm{L}=1 / 2 \operatorname{Mdot} \mathrm{~V}^{2}=1 / 2 \times 10^{7} \times 10^{6}=5 \times 10^{12} \mathrm{plu}=3 \times 10^{42} \mathrm{erg} \mathrm{s}^{-1}$
$\mathrm{F}=\operatorname{Mdot} \mathrm{V}=10^{7} \times 10^{3}=10^{10} \mathrm{pfu}=5.9 \times 10^{34}$ dyne

(e) Magnitude Systems and Surface Brightness

The previous section deals only with dynamical variables : V, R, t, M.
Let's introduce starlight into the mix, not least because it is easy to measure.
Astronomers use two systems: magnitudes and fluxes (each with apparent and intrinsic)
it can sometimes be tricky jumping back and forth between these systems.

- Magnitudes:

The generic magnitude is defined:

$$
\mathrm{m}=\text { const }-2.5 \log _{10}[\text { flux }]=-2.5 \log _{10}\left[\text { flux } / \text { flux } _0\right]
$$

where flux_0 is a reference flux for a star with $\mathrm{m}=0.0$ (usually Vega), and is filter-specific. Typically, $\mathrm{m} \sim 12-14$ (nearby galaxies); 16-18 (distant galaxies); 21-25 (very distant galaxies). Apparent magnitudes, m, include information on both intrinsic luminosity and distance.

Absolute magnitude (M) is defined as the apparent magnitude (m) were the object at 10 pc , i.e.:

$$
\begin{aligned}
& \mathrm{m}=\text { const }-2.5 \log \mathrm{f}_{\mathrm{dpc}} \\
& \mathrm{M}=\text { const }-2.5 \log \mathrm{f}_{10 \mathrm{pc}}
\end{aligned}
$$

but from the inverse square law:

$$
\mathrm{f}_{10 \mathrm{pc}}=\mathrm{f}_{\mathrm{dpc}} \times\left(\mathrm{d}_{\mathrm{pc}} / 10\right)^{2}
$$

so, substituting:

$$
\begin{aligned}
& \mathrm{M}=\text { const }-2.5 \log \left[\mathrm{f}_{\mathrm{dpc}} \times\left(\mathrm{d}_{\mathrm{pc}} / 10\right)^{2}\right] \\
& \mathrm{M}=\text { const }-2.5 \log \mathrm{f}_{\mathrm{dpc}}-2.5 \log \mathrm{~d}_{\mathrm{pc}}^{2}-2.5 \log (1 / 100)
\end{aligned}
$$

Giving the well-known relation:

$$
\mathrm{M}=\mathrm{m}-5 \log \mathrm{~d}_{\mathrm{pc}}+5
$$

By placing everything at 10 pc , absolute magnitudes are related to an object's luminosity $\mathrm{M} \sim-10$ to -17 (dwarfs);
$\mathrm{M} \sim-18$ to -21 (normal galaxies);
$M \sim-22$ to -24 (giant galaxies \& QSOs).

- Solar magnitudes and fluxes:

Often, we express luminosities relative to the sun (e.g. $3 \times 10^{8} \mathrm{~L}_{\mathrm{V}, \odot}$)
The sun's absolute magnitude in band $\mathrm{X}=\mathrm{U}, \mathrm{B}, \mathrm{V}, \mathrm{R}, \mathrm{I}$ is $\mathrm{M}_{\mathrm{X}, \odot}=5.66,5.47,4.82,4.28,3.94$.
Hence, an object with absolute magnitude M_{X}, has luminosity:

$$
\mathrm{L}_{\mathrm{X}}=\operatorname{dex}\left[-0.4\left(\mathrm{M}_{\mathrm{X}}-\mathrm{M}_{\mathrm{X}, \odot}\right)\right] \mathrm{L}_{\mathrm{X}, \odot}
$$

- Surface Brightness:

Extended objects have surface brightness, μ in mag $\operatorname{arcsec}^{-2}$ ($\mathrm{mag} / \mathrm{ss}$; sometimes written Σ) Since μ is independent of distance it immediately gives the surface luminosity density, $\mathrm{I} \mathrm{L}_{\odot} \mathrm{pc}^{-2}$ e.g. using $\mathrm{M}_{\odot, \mathrm{B}}$ from above, we find (see homework) :

$$
\mu_{\mathrm{B}}=27.04-2.5 \log \left(\mathrm{I}_{\mathrm{B}}\right)
$$

and in general, for $\mathrm{U}, \mathrm{B}, \mathrm{V}, \mathrm{R}, \mathrm{I}$, the constant is: $27.23,27.04,26.39,25.85,25.51$.

- Example:

M87 has a central surface brightness $\mu_{\mathrm{V}}=17 \mathrm{mag} / \mathrm{ss}$.
\rightarrow the core has projected luminosity density: $\mathrm{I}_{\mathrm{V}}=\operatorname{dex}[-0.4(17-26.39)]=5,700 \mathrm{~L}_{\mathrm{V}, \odot} \mathrm{pc}^{-2}$.
if the core radius is 10 arcsec , what's the core's apparent magnitude?
$\rightarrow \mathrm{m}_{\text {core }} \sim 17-2.5 \log \left[\pi \times 10^{2}\right]=10.75$
for a distance of 15 Mpc , what's the total core luminosity?
$\rightarrow M=m-5 \log d_{p c}+5=-20.13$, giving $L=\operatorname{dex}[-0.4(-20.13-4.82)]=9.55 \times 10^{9} \mathrm{~L}_{\mathrm{V}, \odot}$
Using $10 \operatorname{arcsec}=10 \times 15 \times 10^{6} / 206265=730 \mathrm{pc}$, we find a luminosity density:
$\rightarrow \mathrm{j}_{\text {core }} \sim \mathrm{I}_{\text {core }} / 2 \mathrm{r}_{\text {core }} \sim 3.9 \mathrm{~L}_{\mathrm{V}, \odot} \mathrm{pc}^{-3}$.
to find the mass density requires a mass-to-light ratio, which is our next topic:

(f) Mass to Light Ratios

Light and dynamics are coupled using "Mass to Light Ratios (M/L)".

- "Mass to Light" (M/L) ratios are important for two reasons :
- they allow us to estimate mass (important but difficult to measure)
using light (easy to measure)
- they tell us about the content of a system, eg (M/L) values differ : pop I < pop II < galaxy+halo < clusters
- Solar units are used : where $(M / L)_{\odot} \equiv M_{\odot} L_{\odot} \equiv 1$

Physical units : kg/Watt are not generally used
[conversion: $(\mathrm{M} / \mathrm{L})_{\odot, \text { bol }}=5173 \mathrm{~kg} /$ Watt $=0.5173 \mathrm{gm} /(\mathrm{erg} / \mathrm{s})$]
(M/L) is expressed at a given waveband, most commonly B,V,I,K, or bolometric (all λ). e.g. for waveband " X ", using absolute magnitudes :

$$
(\mathrm{M} / \mathrm{L})_{\mathrm{X}}=\mathrm{M} / \mathrm{M}_{\odot} / \mathrm{L}_{\mathrm{X}} / \mathrm{L}_{\odot, \mathrm{X}}=\mathrm{M} / \mathrm{M}_{\odot} / \operatorname{dex}\left[-0.4\left(\mathrm{M}_{\mathrm{X}}-\mathrm{M}_{\odot, \mathrm{X}}\right)\right]
$$

where $\mathrm{M}_{\mathrm{X}} \& \mathrm{M}_{\odot \mathrm{X}}$ are X-band absolute magnitudes of the object \& sun; and $\mathrm{L}_{\mathrm{X}} \& \mathrm{~L}_{\odot \mathrm{X}}$ are X -band luminosities of the object \& sun and $\mathrm{X}=\mathrm{U}, \mathrm{B}, \mathrm{V}, \mathrm{R}, \mathrm{I}, \mathrm{K}, \mathrm{bol}$ and $\mathrm{M}_{\odot \mathrm{X}}=5.66,5.47,4.82,4.28,3.94,3.33,4.74$
note : $(\mathrm{M} / \mathrm{L})_{\mathrm{X}}$ is the same for all X only if the object and sun have the same colors
(careful: M used for both mass and absolute magnitude here - sorry)
One can also use luminosities (usually only bolometric)
$\mathrm{L}_{\odot, \text { bol }}=3.84 \times 10^{33} \mathrm{erg} \mathrm{s}^{-1}$ and $\mathrm{M}_{\text {bol }}=-2.5 \log \left(\mathrm{~L}_{\text {bol }} / \mathrm{L}_{\odot, \text { bol }}\right)+4.74$

- For main sequence stars, we have $L \propto M^{3.5}$, giving : $(M / L) \propto M^{-2.5} \propto L^{-0.71}$
showing, as one expects, later spectral types have higher M/L.
eg K stars : $\mathrm{M} \sim 0.5 \mathrm{M}_{\odot} \rightarrow \mathrm{M} / \mathrm{L} \sim 10$; A stars : $\mathrm{M} \sim 2.0 \mathrm{M}_{\odot} \rightarrow \mathrm{M} / \mathrm{L} \sim 0.1$
- For composite systems, M / L reflects the average M / L over the population
- Pop I (young) : massive stars dominate light; low mass stars dominate mass
- Pop II (old) : giants dominate light; M.S. stars dominate mass
\rightarrow Typical galaxy (\& solar neighborhood) has $M / L_{V} \sim 6, M / L_{B} \sim 10$
\rightarrow In general : M / L increases with age and metallicity
\rightarrow Maximum range : $2<\mathrm{M} / \mathrm{L}_{\mathrm{B}}<20$.
Dark components further increase these values, eg
- SMBH in galaxy nuclei
- Dark Matter in galaxy halos

More specifically, for main sequence stars and composite systems in V :

Type	$\mathbf{M} / \mathbf{M}_{\odot}$	$\mathbf{M}_{\mathbf{V}}$	$\mathbf{L}_{\mathbf{V}} / \mathbf{L}_{\odot}, \mathbf{V}$	$(\mathbf{M} / \mathbf{L})_{\mathbf{V}}$
O5	60	-5.7	16,140	0.0037
B5	5.9	-1.2	255	0.023
A5	2.0	+1.95	14	0.14
F5	1.4	+3.5	3.4	0.41
G5	0.92	+5.1	0.77	1.19
K5	0.67	+6.4	0.23	2.87
M5	0.21	+12.3	0.001	206

System	$(\mathbf{M} / \mathbf{L})_{\mathbf{V}}$	Reason
HII region	$0.3-1$	Pop I only
Spiral Disk	$2-5$	Pop I + II
Bulges / Ellipticals	$8-15$	Pop II
Nucleus (no AGN)	$10-50$	BH present
Galaxy + halo	$20-50$	DM important
Clusters	$100-500$	DM dominates
Universe	~ 1000	DM dominates

(g) Cosmology 101

- The Hubble Law

The most basic piece of cosmology is the Hubble Law, which arises from Cosmic expansion.

$$
\mathrm{v}=\mathrm{H}_{0} \times \mathbf{d}
$$

where v is recession velocity, d is distance, and H_{0} is Hubble's constant $\sim 72 \mathrm{kms} / \mathrm{s} / \mathrm{Mpc}$
Example: what's the distance to a galaxy with $\mathrm{z}=0.02$?
$\mathrm{v} \approx \mathrm{cz}=6000 \mathrm{~km} / \mathrm{s}$,
so $\mathrm{d}=\mathrm{v} / \mathrm{H}_{0}=6000 / 72=83.3 \mathrm{Mpc}=272 \mathrm{Mly}$
This now allows you to calculate luminosities \& linear sizes from fluxes \& angular sizes.
Note: at higher z (e.g. >0.3), this equation won't work, and one needs a more sophisticated approach. Also, at very low z, peculiar velocities can be significant introduce errors to distances.

- Use of Scaled Hubble Constant: h

For decades, H_{o} was uncertain to $\sim 50 \%$
It was/is useful, therefore, to set H_{o} to $100 \mathrm{~h} \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ with h kept explicit
h appears once for each redshift-distance, with a power of opposite sign: e.g.
The distance to Coma, cz $\sim 6000 \mathrm{~km} / \mathrm{s}$, is $60 \mathrm{~h}^{-1} \mathrm{Mpc}$
The luminosity of 3 C 123 is $3 \times 10^{44} \mathrm{~h}^{-2} \mathrm{erg} / \mathrm{s}$
3 C 123 has $\mathrm{M}_{\mathrm{B}} \sim-24.5+5 \log (\mathrm{~h}) \quad[$ recall $\mathrm{m}-\mathrm{M}=5 \log (\mathrm{~d})-5]$
The jet in 3C 123 has length $150 \mathrm{~h}^{-1} \mathrm{kpc} \quad$ [length $=$ angle x distance]
The core mass of NGC 1234 is $2 \times 10^{10} \mathrm{~h}^{-1} \mathrm{M}_{\odot}\left[\mathrm{M} \sim \mathrm{RV}^{2} / \mathrm{G}, \& \mathrm{R} \propto \mathrm{d}\right]$
Its luminosity density is $1.6 \mathrm{~h} \mathrm{~L}_{\odot} \mathrm{pc}^{-3} \quad\left[\mathrm{~h}^{-2} / \mathrm{h}^{-3}\right]$
Its M / L ratio is $10 h$ solar units $\left[h^{-1} / h^{-2}\right]$
Note that h does not appear for non-redshift distances (eg Cepheid distances).
Although we now know $\mathrm{h}=0.72$ (with $\sim 5 \%$ uncertainty), its good to keep using it.

- Concordance Model Parameters

After WMAP, the various cosmological datasets have yielded a robust cosmological model.
The total density is equal to the critical density $\left(\Omega_{\text {tot }}=1.00\right)$ so the spatial geometry is Euclidean.
The breakdown of today's densities is: $\Omega_{\mathrm{b}}=0.04, \Omega_{\mathrm{dm}}=0.23, \Omega_{\mathrm{de}}=0.73, \Omega_{\mathrm{r}}=8.4 \times 10^{-5}$.
These are routinely used to define the relation between redshift and other important parameters, including cosmic time [image]

- Intermediate \& High Redshift

It is now routine to ask how any properties change with redshift (i.e. cosmic epoch)
It is therefore useful to have a basic feel for the link between z and lookback time.

- $\mathrm{z} \sim 1$ is $\sim 60 \%$ lookback time (LBT), with cosmic age $\sim 6 \mathrm{Gyr}$
- coasting (changover from de to ac-celeration) occurs at z~0.65 or $\sim 45 \%$ LBT
- high-z galaxies and QSOs at z~4-6 are at $\sim 90 \%$ LBT, age $\sim 1 \mathrm{Gyr}$
- recombination is at $\mathrm{z}=1100, \mathrm{~T}=3300 \mathrm{~K}$, age $=380 \mathrm{kyr}, p \sim 10^{3} \mathrm{~cm}^{-3}$
- at recombination, 10 kpc subtends ~ 2.8 arcmin, or $1 \mathrm{deg} \sim 170 \mathrm{kpc}$
- matter/energy equality occurs at $\mathrm{z} \sim 3300, \mathrm{~T} \sim 10,000 \mathrm{~K}$, age $\sim 50 \mathrm{kyr}$.

This concludes our introduction to the subject of Extragalactic Astronomy
We are now ready to start, relatively gently, with Topic 2 : Galaxy Morphology.

