## Whittle : EXTRAGALACTIC ASTRONOMY

| Home Main Index Toolbox PDFs |                  |                        |                        |  |  |  |  |
|------------------------------|------------------|------------------------|------------------------|--|--|--|--|
| 1 : Preliminaries            | 6: Dynamics I    | 11 : Star Formation    | 16 : Cosmology         |  |  |  |  |
| 2 : Morphology               | 7 : Ellipticals  | 12 : Interactions      | 17 : Structure Growth  |  |  |  |  |
| 3 : Surveys                  | 8: Dynamics II   | 13 : Groups & Clusters | 18 : Galaxy Formation  |  |  |  |  |
| 4 : Lum. Functions           | 9: Gas & Dust    | 14 : Nuclei & BHs      | 19: Reionization & IGM |  |  |  |  |
| 5 : Spirals                  | 10 : Populations | 15 : AGNs & Quasars    | 20 : Dark Matter       |  |  |  |  |

## 4. LUMINOSITY FUNCTIONS



# (1) Introduction

Тор

Next

Galaxies come in a huge range of luminosity and mass :  $\sim 10^6$  (M<sub>B</sub> -7.5 to -22.5).

Look at any galaxy cluster, and you see a wide range of galaxy luminosities [image] The **Luminosity Function** specifies the relative number of galaxies at each luminosity.

The Luminosity function contains information about :

- primordial density fluctuations
- processes that destroy/create galaxies
- processes that change one type of galaxy into another (eg mergers, stripping)
- processes that transform mass into light

Although this information is (badly) convolved, nevertheless :

- Observed LFs are fundamental observational quantities
- Successful theories of galaxy formation/evolution must reproduce them



## (2) Brief History

- **1930** Hubble notes that <u>apparent</u> magnitude correlates tightly with <u>redshift</u> (fainter galaxies have higher z). He concludes galaxies have a narrow (Gaussian) <u>absolute</u> magnitude distribution:  $\langle M_B \rangle \sim -18$ ,  $\sigma \sim 0.9$ mag
- **1942** Zwicky realizes that the Local Group contains many low luminosity galaxies He argues for a rising function for low luminosities.

As we shall see, this disagreement foreshadows two important facts :

- corrections for sample bias are **essential**
- there may be two types of LF; one for "normal" galaxies and one for "dwarfs"





## (3) The Schechter Function

In 1974 Press and Schechter calculated the **mass** distribution of clumps emerging from the young universe, and in 1976 Paul Schechter applied this function to fit the **luminosity** distribution of galaxies in Abell clusters [image]. The fit turned out to be excellent, though the reasons why are still not well understood (see sec 7).

$$\Phi(L) \; dL = n_* \; \left( rac{L}{L_*} 
ight)^lpha exp\left( -rac{L}{L_*} 
ight) \; d\left( rac{L}{L_*} 
ight)$$

- The function has two parts and three parameters: [image]
  - $L_*$ : luminosity that separates the low & high luminosity parts;  $L_* \sim 10^{10} L_{B\odot} h^{-2}$ , or  $M_{B,*} \sim -19.7 + 5Log(h)$
  - At low luminosity, (L< L<sub>\*</sub>): We have a power law (Φ∝ L<sup>α</sup>)
     α ~ -0.8 to -1.3 ("flat" to "steep")
     → lower luminosity galaxies are more common.
  - At high luminosity, (L > L<sub>\*</sub>): We have an exponential cutoff, (Φ∝ e<sup>-L</sup>)
     → very luminous galaxies are very rare
  - $\circ \ n_*: is a normalization, set at \ L_*$ 
    - $n_{\ast} \sim 0.02 \; h^3 \; Mpc^{\text{-}3}$  for the total galaxy population.

Depending on context,  $n_*$  can be a number; a number per unit volume; or a probability. Note the implicit dependence on Hubble constant, via  $h^3$ .

• Integration over **number** gives:

$$N_{(>L)} = \int_{L}^{\infty} \Phi(L') \, dL' = n_* \, \Gamma(\alpha + 1, L/L_*)$$
(4.2)

where  $\Gamma(a)$  is the gamma function [image] and  $\Gamma(a,b)$  is the incomplete gamma function. For  $L \rightarrow 0$ , the total number of galaxies,  $N_{tot} = n_* \Gamma(\alpha + 1)$ . Note that for  $\alpha \le -1$ ,  $N_{tot}$  **diverges** (many many dwarfs) In reality, the LF must turn over at some lower L to avoid this

• Integration over **luminosity** gives :

$$L_{(>L)} = \int_{L}^{\infty} L' \, \Phi(L') \, dL' = n_* \, L_* \, \Gamma(\alpha + 2, L/L_*)$$
(4.3)

Integrating from zero gives a **total** luminosity density of  $L_{tot} = n_* L_* \Gamma(\alpha + 2)$ For typical  $\alpha$ , the luminosity does **not** diverge (nor does the mass)

- Note that the integrated global LF gives a cosmologically important number:
- → for  $\alpha$  = -1, the luminosity density is ~10<sup>8</sup> h L<sub>B</sub> Mpc<sup>-3</sup>, which for M/L ~ 10 gives: → a total **mass** density of ~ 10<sup>9</sup> h M<sub>☉</sub> Mpc<sup>-3</sup>, corresponding to  $\Omega_* \sim 0.004$ We conclude that stars/galaxies contain ~10% of all baryons (since  $\Omega_{bary} \sim 0.04$ ) (The rest is thought to be in the IGM).
- Be careful which version of the luminosity function is used: [image]
   φ(L) per dL, [which is usually plotted Log (Φ) vs Log L].



(4.1)







- $\Phi(M)$  per dM where M is Absolute Magnitude, so this is effectively d(logL).
- Sometimes the **cumulative** LF is given: N > L or N < M.
- Observationally, it is also important to specify:
  - whether the LF is for specific Hubble Types, or integrated over all Types
  - whether the LF is for Field galaxies or Cluster galaxies (or whatever the environment is)
  - the value of  $H_0$ , since  $\Phi$  varies as  $h^3$  while L or M vary as  $h^{-2}$  where  $h = H_0/(100 \text{ km/s/Mpc})$



### (4) Methods of Evaluating Luminosity Functions

Cluster and field samples require quite different approaches:

### (a) Cluster Samples

Since all cluster galaxies are at the same distance:

- bin galaxies by apparent magnitude, down to some limit, to get  $\Phi(m)$
- use cluster redshift (distance) to get, simply,  $\Phi(M)$
- Fit a Schechter function to  $\Phi(M)$  by minimizing  $\chi^2$  to obtain  $M_*$  and  $\alpha$ .

Complications arise principally from trying to eliminate fore/back-ground field galaxy contamination:

- velocities useful (though may still be ambiguous; dwarfs are too faint to measure)
- dwarfs (except BCDs) have low SB, while distant background galaxies usually have high SB
- apply **statistical** corrections to N(m) using field samples.

### (b) Field Samples

 $\int_{0}^{\infty}$ 

T (T) 1T

In general, deriving LFs for the field is more difficult than for clusters: Many methods have been developed, here is the simplest:

### (i) Classical Method (eg Felten 1977)

Obtain a **flux limited** sample: all galaxies brighter than given magnitude limit. Use distances to calculate luminosity of each galaxy Form a histogram in luminosity: N(L).

However, each luminosity bin comes from a different survey volume (Malmquist bias): [image]. e.g. surveyed volume,  $V_{max}(L)$ , is small (large) for low (high) luminosity objects So divide N(L) by  $V_{max}(L)$  to create  $\Phi(L)$  the **density** of objects at each luminosity. This now corrects the Malmquist bias and each luminosity samples the same effective volume.

Unfortunately, this method **assumes a constant space density** For nearby samples, this isn't such a good approximation.

### (ii) Maximum Likelihood Method

Most modern work uses a "maximum likelihood" approach (e.g. SDSS). A flux limited sample is a list of galaxies, each with distance  $d_i$  and luminosity  $L_i$ Consider the minimum luminosity,  $L_{min}(d_i)$ , that could be in the sample, i.e. above the flux limit. The relative number of galaxies of **any** luminosity that could be at that distance,  $d_i$  is:

$$\int_{L_{min}(d_i)} \Phi(L) \ dL$$

So the **probability**,  $p_i$ , that the galaxy actually has luminosity  $L_i$  is given by:



9/22/10 4:17 PM



(4.4)

$$p_i = \left(\frac{\Phi(L_i)}{\int_{L_{min}(d_i)}^{\infty} \Phi(L) \, dL}\right) \tag{4.5}$$

One now defines a **liklihood function**,  $\mathcal{L}$ , giving the joint probability of finding all L<sub>i</sub> at their respective distances d<sub>i</sub>:

$$\mathcal{L} = \prod_{i} p_i \tag{4.6}$$

If  $\Phi(L)$  is parameterized by a Schechter function, then one varies  $L_*$  and  $\alpha$  so as to maximize  $\mathcal{L}$ . These are now the most likely parameters consistent with the data and a Schechter form.

One can fit **any** function this way: e.g. a set of values of  $\Phi_k(L)$  specified at K luminosity bins:  $\Phi_k$  (k=1,2,3....K). This is how the SDSS data were analyzed by Blanton et al 2003: o-link [image]

#### (iii) Testing Completeness with $\langle V/V_{max} \rangle$

In addition to Malmquist bias, samples can be incomplete for other reasons:

- magnitude errors near m<sub>lim</sub> include fainter galaxies
- often, magnitude corrections (e.g. for internal absorption) are only applied **after** the sample is defined

In practice, magnitude dependent weighting factors are applied to compensate for the incompleteness.

It is possible to **check** for completeness with the  $V/V_{max}$  test: For each galaxy, find the ratio V /  $V_{max}$  where:

- V is the volume out to that galaxy
- V<sub>max</sub> is the volume out to d<sub>max</sub>, the distance that the galaxy would be at the flux limit.

If the average of that ratio,  $< V / V_{max} > = 0.5$  then the sample is complete.

One can also separate the sample into bins of apparent magnitude,

When  $\langle V / V_{max} \rangle_m$  begins to deviate from 0.5 you've hit the completeness limit of the survey.

Unfortunately, this test also assumes a constant space density.



### (5) Different LFs for Different Hubble Types

Early work showed :

- Schechter function is a good fit to many galaxy samples, but
- the parameters  $(L_*, \alpha)$  can vary depending on : sample depth, cluster or field, cluster type

Recently, things are becoming clearer :

- it is important to consider the LFs of different galaxy Types.
- it now seems that the LFs of the major galaxy types are
  - different from eachother
  - relatively independent of environment
- it is the relative **proportions** of each galaxy type that vary between cluster and field (see next section)

More specifically, broken down by type, we have the following LFs :

- Spirals (Sa Sc) : <u>Gaussian</u>,  $\langle M_B \rangle \sim -16.8 + 5\log(h)$ ,  $\sigma \sim 1.4$  mag
- S0 galaxies : <u>Gaussian</u>,  $<M_B > \sim -17.5 + 5\log(h), \sigma \sim 1.1 \text{ mag}$
- Ellipticals : <u>Skewed Gaussian</u> (to bright),  $\langle M_B \rangle \sim -16.9 + 5\log(h)$



- dwarf Ellipticals (dE+dSph) : <u>Schechter function</u>,  $M_* \sim -16 + 5\log(h)$ ,  $\alpha \sim -1.3$
- dwarf Irregulars (dIrr): <u>Schechter function</u>,  $M_* \sim -15 + 5\log(h)$ ,  $\alpha \sim -0.3$

LFs for the Field and Virgo are illustrated here: [image]. Clearly, full sample LFs :

- have a steep cutoff due to the Gaussian LF of the luminous Spirals, S0s and Ellipticals
- have rising faint end due to dEs (and to lesser extent dIrr).



### (6) Different LFs for Different Environments

It seems the LFs of galaxies in clusters can be different from galaxies in the field. In general, cluster LFs :

- are well fit by a Schechter function
- have similar L<sub>\*</sub>, though  $\alpha$  can vary, and is often steeper than in the field (~ -1.3)
- there can be a dip/drop near  $M_B \sim -16 + 5log(h)$
- there can be an excess at higher luminosities
- cD galaxies (~10L\*) dont fit, and would be considered outliers in **any** smooth distribution.

We can now understand much of this :

- different LFs usually arise from different **proportions** of Sp, S0, E, dE, and dIrr
- specifically, more E, S0, dEs are in clusters, while more Spirals and dIrr are in the field, this is evidence for a morphological dependence on galaxy density [image].
- the dip at  $M_B \sim -16$  occurs at the changeover from "normal" to "dwarf" galaxies
- cD galaxies have clearly had a different history, probably growing by accretion in dense galactic environments [image]

Analysis of the SDSS shows similar results, but cast in terms of the red and blue sequences [image]

- At higher galaxy density, the relative populations of red and blue galaxies shifts
- There are more high-luminosity red galaxies
- This is consistent with a transformation from blue sequence to red sequence

See Topic 16 § 7 for a discussion of the physical origin of the morphology-density relation.

| Next | Prev | Тор |
|------|------|-----|
| Next | Prev | To  |

## (7) Physical Origin of the Luminosity Function

Why does the galaxy luminosity function have the form that it does? A complete understanding of this is not yet possible, but here are the ingredients: Making galaxies involves at least **two** things

- dark matter halos must form (relatively straightforward)
- baryons must fall in and make stars (complex physics)

Here is a very brief account:

- Cosmological simulations follow cold dark matter from initial slight perturbations to make many halos by hierarchical assembly.
- The **mass distribution** of these halos follows the Schechter form [this was Press and Schechter's 1974 analytic result]. Hence one might expect a Schechter function for the **galaxy** mass distribution [image]
- However, the observed galaxy mass function has completely different upper cutoff and lower slope. Specifically, there are too
  many huge and dwarf halos without huge and dwarf galaxies [image].







- To understand why, we need to look at what prevents baryons from making stars within halos of different size.
  - Gas falling into huge halos is too hot to cool. [image] This becomes the intercluster medium in galaxy clusters.
  - Gas falling into less massive halos is kept hot by AGN jets
  - Gas falling into small halos can be easily blown out by supernovae and star winds
  - Gas cannot fall into tiny halos -- it is prevented by its own pressure.
- These processes are added to the cosmological dark matter simulations using simple prescriptive formulae, to generate so-called: "semi-analytic models" [image].
- These nicely reproduce many galaxy demographic results, including a galaxy mass function that is a much better match to the observed galaxy luminosity function.

| Prev |           |               |      |  |
|------|-----------|---------------|------|--|
|      | Home Main | Index Toolbox | PDFs |  |



