Selection of Homework Questions

Next Prev PDF

Topic 4: Luminosity Functions

(1) The Schechter Function:

Lets evaluate some basic properties arising from the Schechter Luminosity function of galaxies. First, the function reads:

$$
\Phi(L) d L=n_{*}\left(\frac{L}{L_{*}}\right)^{\alpha} \exp \left(-\frac{L}{L_{*}}\right) d\left(\frac{L}{L_{*}}\right)
$$

a. By approximating $\Phi(\mathrm{L})$ for just the low luminosity galaxies $L \ll L_{\star}$, show that for $-2<\alpha<-1$, the total number of galaxies is infinite but the total light is not.
b. Derive an expression for the "mid-rank" galaxy luminosity, $L_{\text {mid }}$, such that half the light comes from galaxies with $L>L_{\text {mid }}$ and half comes from galaxies with $L<L_{\text {mid }}$. What is $L_{\text {mid }} / L_{\star}$ for $\alpha=-1$?
c. Transform the Schechter luminosity function expressed in L to an equivalent function expressed in M, absolute magnitude (don't just copy the formula given in B\&M, but show how it comes about).
d. Using whatever computing environment you prefer, generate plots of the following related LFs:
(a) $\log \Phi(\mathrm{L}) \mathrm{dL}$ vs $\log \mathrm{L} / \mathrm{L}_{*}$
(b) $\log \Phi(\mathrm{M}) \mathrm{dM}$ vs $\mathrm{M}-\mathrm{M}_{\star}$
(c) $\log \mathrm{N}(>\mathrm{L}) \quad$ vs $\log \mathrm{L} / \mathrm{L}_{\text {* }}$
(d) $\log \mathrm{N}(<\mathrm{M})$ vs $\mathrm{M}-\mathrm{M}_{\star}$
where the second two are cumulative functions integrated over L or M to brighter galaxies. Take the normalization n_{\star} to be unity; take the range in L / L_{\star} to be from 10^{-2} to 10 ; and overplot lines with three values of α $:-1.5,-1.0,-0.5$ (dotted, solid, dashed). Be careful to account for the fact that graph (a) expresses Φ per unit interval of luminosity (dL), while graph (b) expresses Φ per magnitude (dM, which is an interval in Log L). Also, note that graphs (c) and (d) are not expressed per interval, but are integrated, and so they should look the same (excluding, possibly, the direction of the x-axis).

Summarize, briefly, the various features you see in the plots and their differences. Why does the graph of Log Φ $(\mathrm{M}) \mathrm{dM}$ immediately tell you that $\alpha=-1.0$ is the critical value separating finite from infinite numbers of galaxies?
(2) Application to the Coma Cluster :

The Coma cluster of galaxies has a luminosity function which is moderately well represented by the Schechter function, with $\alpha=-1$ and $M_{B, \star}=-19.2\left(\mathrm{H}_{\mathrm{O}}=100 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}\right)$. The redshift of Coma is $7000 \mathrm{~km} / \mathrm{s}$ and its total luminosity is about $250 \mathrm{~L}_{*}$.
a. How would α and $\mathrm{M}_{\mathrm{B}, \star}$ change if $\mathrm{H}_{\mathrm{O}}=50 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$?
b. What is L_{\star} (in solar luminosity units) corresponding to $M_{B, \star}$ in these two cases (use $M_{B, \odot}=5.48$)
c. Use the total luminosity to evaluate n_{\star} (the normalization of the Schechter function), and hence estimate how many galaxies are brighter than $L_{\star}, 0.1 \mathrm{~L}_{\star}$, and $0.01 \mathrm{~L}_{\star}$.
d. Estimate the expected luminosity of the brightest galaxy, L_{1}, by setting L_{1} equal to the total luminosity expected from the luminosity function in galaxies brighter than L_{1}. Express L_{1} in units of L_{\star} and as an apparent magnitude. Compare the latter with the observed apparent magnitude for the brightest Coma galaxy, NGC $4889\left(\mathrm{~B}^{\mathrm{o}}{ }^{\mathrm{i}}\right.$ from RC3). Comment on any difference you find between the two magnitudes.

$$
\begin{array}{|l|l|l|l|}
\hline \text { Home } & \text { Main } & \text { Index } & \text { Links } \\
\hline
\end{array}
$$

