Selection of Homework Questions

Next Prev

Topic 4: Luminosity Functions

PDF

(1) The Schechter Function:

Lets evaluate some basic properties arising from the Schechter Luminosity function of galaxies. First, the function reads:

$$\Phi(L) \, dL = n_* \; \left(rac{L}{L_*}
ight)^lpha exp\left(-rac{L}{L_*}
ight) \; d\left(rac{L}{L_*}
ight)$$

- a. By approximating $\Phi(L)$ for just the low luminosity galaxies L << L_{*}, show that for -2 < α < -1, the total number of galaxies is infinite but the total light is not.
- b. Derive an expression for the "mid-rank" galaxy luminosity, L_{mid} , such that half the light comes from galaxies with $L > L_{mid}$ and half comes from galaxies with $L < L_{mid}$. What is L_{mid} / L_{\star} for $\alpha = -1$?
- c. Transform the Schechter luminosity function expressed in L to an equivalent function expressed in M, absolute magnitude (don't just copy the formula given in B&M, but show how it comes about).
- d. Using whatever computing environment you prefer, generate plots of the following related LFs:
 - (a) Log $\Phi(L)$ dL vs Log L/L_{*}
 - (b) Log $\Phi(M)$ dM vs M M_{*}
 - (c) Log N(>L) vs Log L/L_{*}
 - (d) Log N(< M) vs M M₊

where the second two are *cumulative* functions integrated over L or M to brighter galaxies. Take the

normalization n_{\star} to be unity; take the range in L/L_{*} to be from 10⁻² to 10; and overplot lines with three values of α : -1.5, -1.0, -0.5 (dotted, solid, dashed). Be careful to account for the fact that graph (a) expresses Φ per unit interval of luminosity (dL), while graph (b) expresses Φ per magnitude (dM, which is an interval in Log L). Also, note that graphs (c) and (d) are **not** expressed per interval, but are integrated, and so they should look the same (excluding, possibly, the direction of the x-axis).

Summarize, briefly, the various features you see in the plots and their differences. Why does the graph of Log Φ (M) dM immediately tell you that α = -1.0 is the critical value separating finite from infinite numbers of galaxies?

(2) Application to the Coma Cluster :

The Coma cluster of galaxies has a luminosity function which is moderately well represented by the Schechter function, with $\alpha = -1$ and M_{B,*} = -19.2 (H₀ = 100 km/s/Mpc). The redshift of Coma is 7000 km/s and its total luminosity is about 250 L_{*}.

- a. How would α and M_{B,*} change if H₀ = 50 km/s/Mpc ?
- b. What is L_{*} (in solar luminosity units) corresponding to $M_{B,*}$ in these two cases (use $M_{B,\odot} = 5.48$)
- c. Use the total luminosity to evaluate n_{\star} (the normalization of the Schechter function), and hence estimate how many galaxies are brighter than L_{\star} , 0.1 L_{\star} , and 0.01 L_{\star} .

d. Estimate the expected luminosity of the brightest galaxy, L₁, by setting L₁ equal to the total luminosity expected from the luminosity function in galaxies brighter than L₁. Express L₁ in units of L_{*} and as an apparent magnitude. Compare the latter with the observed apparent magnitude for the brightest Coma galaxy, NGC 4889 (B_T^{o,i} from RC3). Comment on any difference you find between the two magnitudes.

Home Main Index Links