Selection of Homework Questions

Topic 6: Theory I : Disks

(1) Epicyclic Motion : Theory

- a. Derive the radial oscillation frequency, κ , for a star perturbed from a circular orbit in an arbitrary axisymmetric potential $\Phi(R)$. Express your result first in terms of the angular velocity, $\Omega(R)$, and then in terms of the rotation curve, V(R).
- b. Show that a disk in which the angular momentum (per unit mass) decreases outwards cannot support stable circular rotation. [Hint: find the condition that perturbations to circular motion cannot yield small epicyclic oscillations.] (B&T-2 Q 3.8)
- c. Starting with Poisson's equation in cylindrical coordinates: $\nabla^2 \Phi = 4 \pi \text{ G} \rho$ (see B&T-2 Eq B.52 p 777), show that an axisymmetric galaxy has epicycle, vertical and orbital frequencies which obey: $\kappa^2 + \nu^2 2 \Omega^2 = 4 \pi \text{ G} \rho$.
- d. Use solar neighborhood values for κ , ν , and Ω , to estimate the local density in the MW disk. (Adapted from B&T-2 Q 3.15).

(2) Solar Epicyclic Motion :

For the sun, assume a current galactocentric distance $R_{\odot} = 8.5$ kpc; Oort's constants A = 15 km/s/kpc and B = -12 km/s/kpc; and a current solar motion relative to the local circular velocity of V_r = -10 km/s (ie towards the galactic center) and V ϕ = +5.2 km/s (ie faster than circular).

- a. Using the epicycle approximation, what are the Sun's minimum and maximum distances from the Galactic center?
- b. Assuming the Sun currently resides in the plane and has $V_z = 7$ km/s, what is the maximum excursion above and below the plane (assume a local mass density of 0.2 M $_{\odot}$ pc⁻³, which extends well above the excursion height).

(3) Disk Resonances :

- a. Use psm units (Topic 1.3e) to quickly show that a velocity gradient of Ω km/s/kpc has associated angular velocity Ω radians/Gyr, frequency $\Omega/2\pi$ Gyr⁻¹, and period P = $2\pi / \Omega$ Gyr.
- b. Consider circular orbital motion of angular velocity Ω viewed in a frame rotating with angular velocity F (same, CCW, direction). What is the **apparent** angular velocity and period of the star? Now add retrograde epicyclic motion of angular velocity κ. For what values of F does the new orbit appear closed after one revolution? Sketch (or write a program to plot) the shape of the orbit and the guiding circle as seen from the rotating frame when F is:
 - 1. Ω-κ
 - **2**. Ω ½ κ
 - 3. Ω ¹/₃ κ
 - **4**. Ω **+** ½ κ
 - 5. Ω 0.49 κ

Consider a three armed spiral with pattern angular velocity $\Omega_p = \Omega - \frac{1}{3}\kappa$. How does the star's epicyclic motion interact with the pattern?

c. A galaxy has the following rotation curve:

 $V_{c} = 200 \sin(\pi/2 \times R_{kpc}/2) \text{ km/s}, 0 < R < 2 \text{ kpc}$

 $V_{C} = 200 \text{ km/s}, \text{ R} > 2 \text{ kpc}.$

The galaxy has a bar and spiral pattern which have constant slow angular velocity of 20 km/s/kpc.

On a single plot, show and label clearly the following functions of R: Ω ; $\Omega - \frac{1}{2\kappa}$; $\Omega + \frac{1}{2\kappa}$; Ω_p . On the same plot with the same x-axis (but with different y-axis), show the rotation curve, V(R). [Hint: it is easiest to evaluate κ (R) numerically rather than algebraically].

d. Identify, if present, the locations of the ILR, CR and OLR resonances.

(4) Estimating Pattern Speeds : Express all frequencies in km/s/kpc, and in Myr⁻¹

- a. For a galaxy with a flat rotation curve at 250 km/s, what's the epicyclic frequency at R = 7 kpc?
- b. If corotation is at R = 6 kpc, what's this galaxy's pattern speed ?
- c. For a two-armed spiral, is R = 7 kpc a resonance radius ?
- d. Assume the outer Lindblad resonance is at R = 20 kpc. What's the galaxy's pattern speed now (assume the pattern has m = 2) ?

(5) Disk Stability :

- a. Derive an approximate expression for local disk instability to gravitational clumping, the so-called Toomre Q parameter (for stars).
- b. A galaxy has rotation curve V = $200 \times \sin(\pi/2 \times R_{kpc}/3)$ out to 3 kpc, and is flat (V = 200 km/s) beyond. The disk itself

has an exponential scale length of 3 kpc, and surface mass density of 100 M_{\odot} pc⁻² at 6 kpc. Assume the disk has uniform velocity dispersion σ = 20 km/s and uniform M/L ratio (i.e. the surface density is also exponential).

Plot a graph of Q vs R to find which parts of the disk are locally unstable (it is probably easiest to evaluate Q numerically).

c. If the disk is "heated" by the passage of orbiting satellites, what is the minimum value of σ that will supress local instabilities (and associated star formation) throughout the disk?

Home Main Index Links
