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Stellar Dynamics
Stellar dynamics describes systems of many point
mass particles whose mutual gravitational interactions
determine their orbits. These particles are usually
taken to represent stars in small GALAXY CLUSTERS with
about 102–103 members, or in larger GLOBULAR CLUSTERS

with 104–106 members or in GALACTIC NUCLEI with up to
about 109 members or in galaxies containing as many as
1012 stars. Under certain conditions, stellar dynamics can
also describe the motions of galaxies in clusters, and even
the general clustering of galaxies throughout the universe
itself. This last case is known as the cosmological many-
body problem.

The essential physical feature of all these examples
is that each particle (whether it represents a star or
an entire galaxy) contributes importantly to the overall
gravitational field. In this way, the subject differs from
CELESTIAL MECHANICS where the gravitational force of a
massive planet or star dominates its satellite orbits. Stellar
dynamical orbits are generally much more irregular and
chaotic than those of celestial mechanical systems.

Consequently, the description of stellar dynamical
systems is usually concerned with the statistical properties
of many orbits rather than with the detailed positions and
velocities of an individual orbit. Thus it is not surprising
that the KINETIC THEORY OF GASES developed by MAXWELL,
Boltzmann and others in the late 19th century was adapted
by astrophysicists such as Jeans to stellar dynamics in the
early 20th century. Subsequent results in stellar dynamics
contributed to the first analyses of kinetic plasma physics
in the 1950s. Then rapid evolution of plasma theory
in the second half of the 20th century, stimulated partly
by prospects of controlled thermonuclear fusion, in turn
contributed to stellar dynamics. This was an especially
productive interdisciplinary interaction.

After describing basic physical processes such
as timescales, relaxation processes, dynamical friction
and damping, this article derives the virial theorem
and mentions some applications, discusses distribution
functions and their evolution through the collisionless
Boltzmann equation and the BBGKY hierarchy, and
outlines the thermodynamic descriptions of finite and
infinite gravitating systems. The emphasis here is on
fundamental physics rather than on detailed models.

Basic ideas
We start with simple ideas that are common to most stellar
dynamical systems. For point masses to represent their
components, physical collisions must be rare. In a system
of objects, each with radius d , this means that the total
internal volume of all the objects must be much less than
the volume over which they swarm. Two spherical objects
of radius d will have an effective radius 2d for a grazing
collision whose cross section is thereforeσ = 4πd2. If there
is a number density n of these objects and they move on

Figure 1. The deflection of a star m2 by a more massive star m1,
schematically illustrating two-body relaxation.

random orbits, their mean free path to geometric collisions
is

λG ≈ 1/nσ ≈ R3

3Nd3 d (1)

where R is the radius of a spherical system containing N

objects distributed approximately uniformly.
This has two easy physical interpretations. First, the

average number of times an object can move through its
own diameter before colliding is essentially the ratio of the
cluster’s volume to that occupied by all the stars. Second,
the number of cluster radii the object can traverse before
colliding is essentially the ratio of the projected area of
the cluster to that of all the objects. In many astronomical
systems, these ratios are very large. As examples, 105 stars
in a globular cluster of 10 pc radius have λG/R ≈ 3 × 1011

and 103 galaxies in a cluster of 3 Mpc radius have λG/R ≈
30. Therefore stellar dynamics is a good approximation
over a wide range of conditions. It may, however, break
down in the cores of realistic systems where only a few
objects dominate at the very center and orbits are more
regular.

Although geometric collisions may be infrequent,
gravitational encounters are common. These occur when
one object passes by another, perturbing both orbits.
Naturally, in a finite system all the objects are passing by
each other all the time, so this process is continuous. In a
system which is already fairly stable, most perturbations
are small. However, their cumulative effects over long
times can be large and affect the evolution of the system
significantly. To see how this works, we introduce the
fundamental notion of a ‘stellar dynamical relaxation
time’. This is essentially the timescale for a dynamical
quantity such as a particle’s velocity to change by an
amount approximately equal to its original value.

As an illustration of the general principle, consider
two-body relaxation. Suppose, as in figure 1, that a
massive star m1, deflects a much less massive star m2.
Initially, m2 moves with velocity v perpendicular to the
distance b (the impact parameter) at which the undeflected
orbit would be closest to m1.

There is a gravitational acceleration Gm1b
−2 which

acts for an effective time 2bv−1 and produces a component
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of velocity

$v ≈ 2Gm1

bv
(2)

approximately perpendicular to the initial velocity. Since
$v $ v, the effects are linear and they give a scattering
angle ψ ≈ $v/v. A more exact version follows the orbits
in detail, but this is its physical essence. It shows that large
individual velocity changes, $v ≈ v, and large scattering
angles occur when two objects are so close that the
gravitational potential energy, Gm1m2/b, approximately
equals the kinetic energy, m2v

2/2. Such close encounters
are rare. Typical encounters in a spherical system of
total mass M and radius R containing N objects have an
impact parameter about equal to the mean separation,
b ≈ RN−1/3. The average mass m1 ≈ M/N , and the
initial velocity is given by the approximate balance of the
system’s total kinetic and potential energy, v2 ≈ GM/R.
(This last relation follows from the virial theorem below.)
Therefore from equation (2)

$v

v
≈ ψ ≈ N−2/3 (3)

for N % 1, and most gravitational encounters involve
little energy or momentum exchange. Exceptions may
occur in the centers of clusters, particularly among more
massive particles, where the core is relatively isolated and
the effective value of N is low.

Although most individual deflections are small, their
cumulative effects are not. Over long times, uncorrelated
deflections from the nearly randomly moving orbits
cause each particle’s velocity to randomly walk around
its original value. Thus the root-mean-square velocity
increases from its initial value in proportion to the square
root of the number of encounters, or the square root of
the time. To estimate this change, we multiply the square
of each velocity change from equation (2) by the number
of encounters with a given velocity and impact parameter
during a unit time and then integrate over the whole range
of velocities, impact parameters and times of interest.
Finally setting ($v)2 = v2 gives the stellar dynamical
relaxation time for the cumulative small changes to modify
the velocity by an amount equal to its initial value. For
homogeneous systems near equilibrium with GM ≈ Rv2

and a Maxwellian distribution of velocities, this is

τR ≈ 0.2N

ln(N/2)
τc (4)

where τc = R/v ≈ (Gρ̄)−1/2 is the dynamical crossing time
for a particle with average velocity and ρ̄ is the average
density.

In globular clusters, galaxies and rich clusters of
galaxies N ! 103 so τR % τc. Cumulative small deflections
do not amount to much over any one orbital period, but
their secular effect can dominate after many orbits. The
relaxation time τR will vary depending on the geometry,
range of masses and velocity and density distributions

within a system. For most systems, τR exceeds the lifetime
of the system, so it cannot have been the primary process
for a system’s formation and currently relaxed regular
roughly spherical appearance.

Systems in which τR % τc are essentially ‘collisionless’
in the sense that their nearly smooth global gravitational
force dominates the average orbits of their particles. Other
systems in which strong local fluctuations in gravitational
forces dominate particle orbits are ‘collisional’, since
these fluctuations produce large-angle scatterings of the
orbits. (This standard terminology does not refer to
bodily collisions of objects.) Realistic astronomical
systems usually combine aspects of both of these idealized
categories. For example, local gas clouds, star clumps
or dark matter inhomogeneities may scatter stellar orbits
from their average smooth paths in GALAXIES.

Even for maintaining a relaxed system near a state
of equilibrium, gravitational encounters cannot be the
whole story. If they were, the constant average increase
in the root-mean-square velocities of all the particles
would eventually cause them all to escape, defying the
conservation of energy. A second, balancing, process must
operate. This is dynamical friction.

Imagine yourself on a particle moving faster than
the average speed of the particles around it. In a
stationary reference frame attached to your particle, the
other particles will appear to stream by. More particles
will stream by in the direction you are moving toward
than in other directions. The orbits of these excess
particles will be deflected slightly by the gravity of your
particle. This deflection causes a slight convergence of
the orbits behind your particle, opposite the direction of
its motion. On average, therefore, there is a statistical
excess of particles behind yours. Their excess gravity
decelerates the motion of your particle, and tends to
reduce it to the average velocity. Conversely, if the speed
of your particle is slower than average, there will be a
statistical excess of particles passing it in your direction
of motion. Their orbits will converge slightly in front of
the motion of your particle, and their excess gravitational
force will speed up your particle. Thus dynamical
friction is a great leveller of velocities. The balance
between dynamical friction and two-body acceleration
keeps the system close to equilibrium. Therefore τR

must also be the approximate timescale for relaxation by
dynamical friction. Mathematically, a second-order non-
linear partial differential–integral equation, known as the
Fokker–Planck equation, describes this balance, and it is
usually solved numerically.

Dynamical friction also plays another important role
in stellar dynamics. If a massive object M (such as a high-
mass star in a galaxy, or a large black hole in a galactic
nucleus or even a small galaxy in the halo of another
larger galaxy) moves rapidly through a field of much
less massive objects, m, dynamical friction will cause it
to lose kinetic energy, fall deeper into the surrounding
gravitational well, speed up while falling, lose more
energy and consequently spiral into the center of the larger
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system. This helps promote the merging of galaxies,
for example (see GALAXIES: INTERACTIONS AND MERGERS). The
relaxation time τR of equation (4) is decreased significantly
by a factor of order m/M . This is because the large
mass difference induces gravitational excitations, known
as grexons (also from the Latin ‘grex’ meaning ‘herd’ or
‘flock’): a collective gravitational excitation in the wake
of a massive particle moving through a system of less
massive particles. It generally takes the form of a region
of statistical overdensity among the less massive particles
passing through the wake. These gravitating collective
modes of many small masses interact with each other,
enhancing their lifetimes and producing a larger effective
statistical condensation behind M through which particles
of mass m move but linger longer than they would for
M ≈ m. These grexons arise when M % m and amplify
the gravitational drag.

Other forms of collective excitations can also amplify
relaxation in systems which are initially far from
equilibrium. This collective relaxation—of which ‘violent
relaxation’ is an extreme case—is much faster than τR and
closer to the crossing timescale τc. Let us start by thinking
about a relatively simple case. Suppose one star of mass m

initially has zero velocity at the edge of an already relaxed
cluster of stars with total mass M and radius R. Details of
its orbit would depend on the density distribution of the
cluster and the building up of small perturbations, but the
star would roughly follow the equation of motion mr̈ ≈
GmMR−2. Since r̈ ≈ R/t2, this would give a characteristic
infall timescale ∼(Gρ̄)−1/2, which is just the crossing time
τc. We may think of this as the star being scattered by the
average force of the entire cluster, i.e. by the ‘mean field’.
As the star falls inward, the small discrete perturbations of
nearby stars will also scatter it, and this ‘fluctuating field’
will impart some net angular momentum to the star so that
it is unlikely to reach the exact center of the cluster. Instead,
it will join the other stars in their complicated orbits. The
net relaxed orbit of the star comes from the joint effects of
the smooth global mean field and the two-body relaxation
of the local fluctuating field.

Now let us make the process a little more exciting.
Suppose the cluster is not itself relaxed. Then it
will not be quasi-static. Parts of it will be falling
together, interpenetrating, separating, streaming in
different directions and generally flopping around. These
represent larger-scale fluctuations—collective modes—
which will scatter the incoming star in addition to its
scattering by the global mean field and the shorter-
scale fluctuations of nearby individual stars. Moreover,
the large-scale fluctuations will also be scattering and
interacting with each other. With high-amplitude large-
mass collective modes fluctuating over a wide range of
lengthscales, and on corresponding timescales shorter
than τc for the entire cluster, individual orbits will relax on
timescales closer to τc than τR . This is collective relaxation,
and it may apply to the formation of clusters of stars,
galaxies and clusters of galaxies, particularly if they build
up by the merging of smaller systems.

Violent relaxation occurs in the extreme limit when
collective modes are so chaotic on all scales that each of
them lasts for only a short time but is quickly replaced
by another such mode elsewhere in the system. None of
these modes correlates with one another. Each star moves
in a mean field which changes quickly in time as well as
in space. Consequently, the energy of each individual
star along its orbit is not conserved; only the energy
of the entire system remains constant. If this process
could continue indefinitely, the velocity distribution of
the stars would generally become similar to the Maxwell–
Boltzmann distribution for a perfect gas after a timescale
τc.

However, it does not. On this same gravitational free-
fall timescale, τc, damping mechanisms destroy the ideal
conditions for violent relaxation. In stellar dynamics, as
in other systems, damping mechanisms reduce departures
from an equilibrium state. Most damping is characterized
by dynamical dissipation—the roughly random transfer
of relatively ordered (low-entropy) energy into relatively
disordered (high-entropy) energy. The transfer may
occur among ‘particles’, as when a stellar cluster or a
forming cluster of galaxies ejects a high-energy member
so that the remaining cluster becomes more tightly bound.
Another example of particle dissipation is the phase
mixing of orbits. Generally this involves interactions of
stars at slightly different phases of the same, otherwise
unperturbed, orbit. As a simple illustration, suppose an
isolated spherical cluster of stars, initially completely at
rest, starts falling together. The stars will not simply all
plunge together into the center. Instead, stars at different
distances from the center, i.e. at different phases of their
radial orbits, will perturb each other. These perturbations
can be large among stars with low relative velocities,
and can occur on the dynamical crossing timescale τc.
Most stars will acquire some angular momentum from
these perturbations, although the cluster’s net angular
momentum remains zero. This further mixes the phase of
the orbits, dissipating some of the initially highly ordered
radial infall velocities into more random transverse
velocities. Eventually, a component of random kinetic
energy builds up as a form of heat whose effective pressure
resists further collapse of the cluster on the free-fall
timescale τc. Similar phase mixing of orbits, combined
with heat generated by collective relaxation itself, can
occur to damp more general collective motions such as
those of violent relaxation. More gentle phase mixing can
also occur in relaxed galaxies over longer timescales to mix
up streaming motions of stars.

Dissipation and damping may also result when
particles and waves interact. The waves are moving
periodic density perturbations. The best-known case
was first found for plasmas by Landau and then
applied to stellar dynamics. It occurs even in idealized
collisionless systems where particles do not scatter one
another significantly. The physical reason for collisionless
damping arises from the detailed interaction of a wave
with the orbits of background stars which are not part of
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the wave. Thus this process would not show up in a pure
continuum approximation. What happens is that some of
the background stars will move a bit faster than the wave,
others a bit slower, even though their average background
number density is constant. The wave exerts a force on
these stars and thus exchanges energy with them. On
average, the wave gains energy from the fast-moving stars,
which therefore amplify the wave, and loses energy to the
slow-moving stars, which damp the wave. The net result
depends on whether there are more fast or slow stars with
velocities near the phase velocity v = ω/k of the wave.
Moreover, the strength of the growth or damping depends
on the total net number of fast or slow stars involved.
A detailed analysis of this result is complex but, for a
roughly Maxwellian velocity distribution of background
stars, damping is greatest for waves whose phase velocity
ω/k is near the velocity dispersion 〈v〉 of the background
stars. These waves decay on a timescale λ/〈v〉 during
which the stars are able to move through the wave.

Phase mixing, Landau damping and other processes
such as trapping by clusters, tidal disruption and small-
angle scattering all combine with violent relaxation into a
form of collective relaxation which randomizes velocities
on a timescale ∼(Gρ̄)−1/2, provided that the system starts
out very far from its eventual quasi-equilibrium state.
What is left is a system in quasi-equilibrium with a roughly
Maxwellian velocity distribution. No direct collisions are
responsible for this end result—unlike the case of a perfect
gas—only the non-linear encounters among particles and
collective modes.

The virial theorem
This is perhaps the most astronomically important
dynamical property of a quasi-equilibrium system.
Therefore we describe the virial theorem in some detail.
With it, we can estimate the system’s total mass from
observations of the positions and velocities of its particles.
The virial theorem is essentially just a position moment
of the self-consistent gravitational equations of motion
within the system. To illustrate it in the simplest
case, consider a satellite of mass m(α) in a circular orbit
around a much more massive object of mass m(β). The
balance between centrifugal and gravitational forces gives
m(α)v2/r = Gm(α)m(β)/r2. Multiplying through by r gives
2K + W = 0 where K = m(α)v2/2 is the kinetic energy and
W = Gm(α)m(β)/r2 is the gravitational potential energy.
In this circular orbit the instantaneous value and the time
average of the energy are identical. For more complicated
configurations, we might suspect that this result will still
hold for the more general time averages of K and W . It
does.

The most general Newtonian equations of motion for
a system of gravitating particles are

d
dt

(m(α)v
(α)
i ) = F

(α)
i = m(α) ∂ϕ

∂x
(α)
i

= −Gm(α)
∑

β )=α

m(β) x
(α)
i − x

(β)
i

|x(α) − x(β)|3
(5)

for the ith components of position and velocity, where the
gravitational potential

ϕ = G
∑

β )=α

m(β)

|x(α) − x(β)|
(6)

results from all the other particles. This derivation is
general enough to let the particle masses vary with time,
by mass loss or accretion, isotropically as we will assume,
or even anisotropically with a net ‘rocket effect’.

Now multiply equation (5) by x
(α)
j and sum over α

to take its lowest-order position moment. Since α and β

are just dummy indices, we could just as validly multiply
through by x

(β)
j . Equivalently, and more elegantly, we

could represent the right-hand side as half the sum of both
these multiplications, i.e. as

Wij = −G

2

∑

α

∑

β )=α

m(α)m(β)
(x

(α)
i − x

(β)
i )(x

(α)
j − x

(β)
j )

|x(α) − x(β)|3
(7)

which is symmetric to an interchange of the α and β

particles. This is known as the potential energy tensor,
Wij .

Rewriting the left-hand side of equation (5) multiplied
by x

(α)
j gives

∑

α

x
(α)
j

d
dt

(m(α)v
(α)
i ) = d

dt

∑

α

m(α)x
(α)
j v

(α)
i −

∑

α

m(α)v
(α)
i v

(α)
j

= d
dt

∑

α

1
2
m(α)[(x(α)

j v
(α)
i + x

(α)
i v

(α)
j )

+ (x
(α)
j v

(α)
i − x

(α)
i v

(α)
j )] −

∑

α

m(α)v
(α)
i v

(α)
j . (8)

The terms in parentheses separated by a minus sign
are antisymmetric, and since all the other contributions
to the moment of equation (5) are symmetric, these
antisymmetric terms must be zero. This proves
that angular momentum is conserved, since these
antisymmetric terms are just the total angular momentum
of the isolated system. The symmetric terms in equation (8)
may be written as

1
2

d
dt

∑

α

m(α)(x
(α)
j v

(α)
i + x

(α)
i v

(α)
j ) −

∑

α

m(α)v
(α)
i v

(α)
j

= 1
2

d2

dt2

∑

α

m(α)x
(α)
i x

(α)
j

− 1
2

d
dt

∑

α

ṁ(α)x
(α)
i x

(α)
j −

∑

α

m(α)v
(α)
i v

(α)
j . (9)

Now each of the three summations overα on the right-
hand side of equation (9) has a physical interpretation. The
first summation is the usual inertia tensor Iij , the second
we shall call the mass variation tensor Jij and the third is
twice the kinetic energy tensor Tij which incorporates all
the motions of all the particles. Combining equations (7)
and (9) for the moment of equation (5) then gives the tensor
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virial theorem for a system of gravitationally interacting
particles:

1
2

d2Iij

dt2 − 1
2

d
dt

Jij = 2Tij + Wij . (10)

This is an exact result, without any approximations
so far. It provides an overall constraint on the system’s
evolution. Further constraints follow from taking higher-
order moments of the equations of motion. Multiplying
equation (5) by xmvn and summing gives the (m + n)th
combined spatial and velocity moment. This forms an
infinite sequence of virial moments. The more moments
are used, the tighter are the constraints on the system’s
evolution. All the moments taken together usually become
equivalent to a complete solution of the original equations
of motion (5).

In practice, most astronomical calculations are
content with a simplified version of the lowest-order virial
equation (5). If the mass loss rate ṁ(α) = 0, then Jij = 0
and the form reduces to that quoted in many texts. For
the special rate of mass loss proportional to the mass,
ṁ(α) = f (t)m(α)(t), the mass loss tensor is proportional
to the moment of inertia tensor. A great simplification
follows by taking the time average of the virial theorem.
For example, the time average of the first term gives

〈

d2I

dt2

〉

= lim
τ→∞

1
τ

∫ τ

0

dİ

dt
dt = lim

τ→∞

1
τ

[İ (τ ) − İ (0)]. (11)

This time average can be zero either if the system is
localized in position and velocity space so that İ (τ ) has
an upper bound for all τ or if the orbits are periodic so that
İ (τ ) = İ (0). Similarly the time average of Jij can be zero if
ṁ(t) does not increase as fast as t for t → ∞. The terms on
the right-hand side of equation (10) remain non-zero over
any time average, so

2〈Tij 〉 + 〈Wij 〉 = 0. (12)

The usual (contracted) form of the virial theorem is
obtained by setting i = j and summing over i = 1, 2,
3 to give

2〈T 〉 + 〈W 〉 = 0 (13)

where T and W are the entire kinetic and potential energies
of the system.

The virial theorem describes reasonably bound,
quasi-stable clusters of stars and galaxies. Its usual
application is to estimate the mass of these clusters by
writing equation (13) in the approximate form

V 2 = γ
GM

R
. (14)

This is similar to the form for a circular satellite orbit
discussed earlier, but now V 2 is the velocity dispersion
of objects in the cluster, R is the cluster’s radius and
M is its total mass. The constant γ is usually of
order unity and depends on the precise operational
definitions of V , R and M , especially if the particle

masses are not identical. Other factors which influence
γ when trying to deduce M are projection effects
in transverse positions, loss of one position and two
velocity components, departures of time averages from
the instantaneous snapshots of observations, questions of
cluster membership and selection of a limited number of
particles for observation. Each of these effects depends on
the particular circumstances of an individual cluster. Their
combination introduces considerable uncertainty into γ ,
but this can often be estimated with computer simulations.

Virial estimates of the masses of CLUSTERS OF GALAXIES

have been made since the 1930s. A succession of more
accurate results with more complete samples and better
simulations, which continues to the present, revealed clear
discrepancies between the virial mass of many clusters
and their mass estimated from the luminosities of their
individual galaxies. Unless cluster formation proceeded
by a radically different route from the condensation
processes discussed currently, this discrepancy suggests
that the amount of ‘DARK MATTER’ in clusters is about five
times the amount of luminous matter in galaxies. This
gives roughly one-fourth of the total mass needed for a
closed Einstein–Friedmann universe. The form of this
dark matter and its total amount are two of the main
problems of modern astronomy.

Distribution functions
Rather than dealing with the positions and motions of
each identifiable particle individually, stellar dynamics
often finds a less detailed description based on distribution
functions to be more useful and solvable. These
distributions represent the probability that any arbitrary
particle in the system has a particular property of interest.
Usually stellar dynamics is concerned with the single-
particle distribution f (r, v) for the number of particles
having position r and velocity v. Integrated over all
velocities, this gives the density as a function of position.
Integrated over all positions, this gives the velocity
distribution. Integrated over both position and velocity, it
gives the total number of particles in the system. When
f (r, v) is normalized to this total number, it becomes
a probability distribution. Then f (r, v) dr dv is the
probability that a particle is in the differential volume dr
around r and has a velocity in the range dv around v.

Other types of distribution functions are also useful.
For example, the two- particle distribution f (r1, r2, v1, v2)

describes the probability that of any two particles one is
in the volume dr1 with velocity in the range dv1 and the
other is simultaneously in dr2 with velocity in dv2. This
two-particle distribution may be written as the product of
two single-particle distributions plus terms representing
any correlations that may be present between particles in
the two volumes or the two velocity ranges. Similarly,
a hierarchy of three-, four-, etc particle distributions and
correlations may be built up. Eventually it will reach the
N -particle distribution which gives a complete description
of the positions and velocities of all N particles in the
system. This would then be equivalent to specifying the
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position and velocity of every particle—the most detailed
description possible. A related form of distribution
function, f (N), concentrates on cells rather than particles
and specifies the probability that a cell of given size and
shape contains N particles.

All these distribution functions may generally have
anisotropic dependences on position and velocity and
will evolve with time unless they are in a stationary
equilibrium state. Anisotropic distribution functions and
their properties have been widely explored in recent years.
Their complexity provides useful descriptions of stellar
motions in both spiral and elliptical galaxies.

The simplest evolution for the one-particle distribu-
tion function f (r, v, t) occurs in collisionless systems and
follows the collisionless Boltzmann equation. Here colli-
sionless means that particle orbits proceed smoothly un-
der the influence of just the mean field. There are no scat-
terings by other particles or by local fluctuations. Under
these conditions f (r, v, t) satisfies an equation of continu-
ity. This is equivalent to its total time derivative, follow-
ing the motion through a 6-dimensional position–velocity
phase space, being zero:

Df

Dt
= ∂f

∂t
+ v · ∇f + v̇ · ∇vf = 0. (15)

Equation (15) is the collisionless Boltzmann equation—one
of the most useful descriptions of stellar dynamics. Notice
that the gradients in position and in velocity space are
treated equivalently. Although, written this way, it looks
like a fairly simple linear partial differential equation for
f (r, v, t), it is really a complicated non-linear differentio-
integral equation. This is because the gravitation force,
proportional to the acceleration v̇ = ∇φ, is a function of the
density which is itself an integral of f (r, v, t) over velocity
space. This relation is obtained from Poisson’s equation,
∇2φ(r, t) = −4πGρ(r, t), and together with the relevant
initial and boundary conditions leads to self-consistent
solutions.

Very few solutions are known in closed analytic
form; most are results of numerical integrations or
perturbation theory. The best-known solution occurs
for an idealized homogeneous, isotropic, uncorrelated
equilibrium distribution. It is the Maxwell–Boltzmann
distribution with a Gaussian distribution of velocities.
Solutions of equation (15) also provide a zero-order
approximation for systems of particles such as globular
clusters and rich clusters of galaxies. Their corresponding
spatial density is spherically symmetric, decreasing with
radius. Such isothermal spheres have to be truncated to
describe clusters of finite mass. Truncation by tidal cutoffs,
evaporation, inflow, etc for realistic systems will modify
their distribution functions.

Spatial and velocity moments of the collisionless
Boltzmann equation, similar to those leading to the
virial theorem and its generalizations described earlier,
yield the Jeans equations of ‘stellar hydrodynamics’.
These are analogous to the usual fluid equations

of hydrodynamics. However, because short-range
atomic interactions dominate fluids, it is a much better
approximation to truncate the moment equations at low
order for fluids than it is in the stellar dynamical case.
Moreover, the general stellar hydrodynamical equations
are anisotropic in their spatial and velocity coordinates.

Generalizations of the collisionless Boltzmann equa-
tion have been developed to incorporate local fluctuations,
such as those described earlier, which lead to dynamical
relaxation, evaporation and other instabilities. The most
useful of these is the Fokker–Planck description which rep-
resents the total gravitational field as the sum of two parts:
the smooth average long-range field and the local fluctuat-
ing field due to near-neighbor particles. These fluctuations
cause the particles to diffuse in velocity space as well as in
configuration space. They also incorporate the dynamical
friction effects, mentioned earlier, which prevent excessive
velocities from being reached. The Fokker–Planck equa-
tion provides a more accurate account of processes such
as evaporation, core collapse and oscillations which can
occur in globular clusters.

The most general and rigorous description of stellar
dynamics, and therefore the least solvable, is known as the
BBGKY hierarchy (after the initials of its early developers
in other subjects, Born, Bogoliubov, Green, Kirkwood and
Yvon). It starts from Liouville’s equation which is an
equation of continuity similar to equation (15) but in a
6N -dimensional (Gibbs) phase space rather than in the
6-dimensional (Boltzmann) phase space. Here N is the
number of physical particles in the system and each point
in the Gibbs phase space of 3N position plus 3N velocity
dimensions represents the state of the entire system of
6N particles at a given time. As the system evolves, its
representative point moves continuously and smoothly
through this phase space because there are no external
forces outside the system to perturb it. Thus the Liouville
continuity equation is exact. It is a first-order linear
differential equation. The problem is that it has 6N

variables, plus time. In fact, it is just a condensed way
of representing the orbits of all the particles in the system.

To make this description useful, it is necessary to
successively integrate out all but 6(N − 1), 6(N − 2), . . . , 6
of the 6N variables in the full distribution function. This
leaves a set of N coupled non-linear integro-differential
equations for all the N , N − 1, N − 2, . . ., one-particle
distribution functions—the BBGKY hierarchy. The entire
set is equivalent to the equations of motion for all
N particles. Truncating the lowest-order equation for
f (r, v, t) by neglecting its coupling to f (r1, r2, v1, v2, t)

is equivalent to the collisionless Boltzmann equation.
Retaining this coupling, but neglecting any higher-order
coupling, gives essentially the Fokker–Planck equation.
This formalism has been much studied and gives great
insight into the physical nature and relations among
different stellar dynamical descriptions. It has found
important applications in understanding the linear growth
of two- and three-particle correlation functions in galaxy
clustering, as well as for plasma physics and the theory of
imperfect fluids.
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Thermodynamic descriptions
Particle and distribution function descriptions are math-
ematically complex because they contain much detailed
microscopic information about a stellar dynamical system.
Thermodynamic descriptions are mathematically much
simpler because they deal mainly with macroscopic infor-
mation which averages over the microscopic detail. This
relative simplicity has provided considerable physical in-
sight into the behavior of stellar dynamical systems.

Since the macroscopic properties generally change
with time (e.g. even in virialized clusters, particles
slowly evaporate), stellar dynamical systems cannot be
in equilibrium. Therefore it might be thought that
thermodynamics, which is primarily an equilibrium
theory, could not apply. Often, however, the timescales for
departures from equilibrium are very long, and singular
states are essentially unattainable over shorter times. As
a result, thermodynamics provides a good approximation
for the periods of interest. The system may be in quasi-
equilibrium, during which it evolves through a sequence
of equilibrium states. In simple systems, each state
can be described well in terms of average macroscopic
thermodynamic variables such as temperature, pressure,
chemical potential, internal energy, volume, total number
of particles and entropy, but these quantities change on a
timescale which is slow compared with the timescale for
a local microscopic configuration of particle positions and
velocities to change.

Symmetry properties of different physical systems
strongly influence their thermodynamic descriptions. For
example, infinite statistically homogeneous systems—
which may represent galaxy clustering—have rotational
and translational symmetry everywhere. However,
finite spherical systems have rotational symmetry only
at their center and translational symmetry nowhere.
Consequently these infinite systems are described by a
grand canonical ensemble in which energy and particles
can move across boundaries. Finite, isolated clusters, on
the other hand, are described either by a microcanonical
ensemble with no transport across boundaries or by a
canonical ensemble with only energy transport. (An
ensemble is a collection of systems with the same
average macroscopic properties but different microscopic
configurations consistent with the macroscopic averages.)
This leads to differences in their distribution functions and
fluctuation spectra.

Thermodynamic behavior in systems dominated by
gravity is often ‘counterintuitive’, although really just in
the sense that they behave differently from more familiar
systems of particles without long-range, unshielded,
attractive forces. For example, if one removes energy
from a self-gravitating cluster of stars, it becomes hotter.
Adding energy makes it cooler. Thus it has a negative
specific heat. In fact, this follows simply from the virial
theorem for a bound system. Slowly adding energy
makes the system’s gravitational well less negative. To
maintain their changing quasi- equilibrium state, the
particle velocities must decrease on average, and the

system grows cooler. It is essentially the same effect as
adding energy to a satellite orbit around a massive body,
and so it should be, since the virial theorem applies to both
cases.

Applied to finite, isolated spherical clusters of stars,
gravitational thermodynamics has been especially useful
in elucidating their global instabilities. The isothermal
sphere, where all particles have the same mass and
temperature, provides a relatively simple illustration. Its
density is obtained by solving the collisionless Boltzmann
equation and Poisson’s equation for these conditions, or,
more easily but less accurately, by solving the gravitational
hydrostatic equations with an isothermal gas equation of
state. It has a central core, and density ρ ∝ r−2 in the
outer parts, and is usually truncated to keep its mass finite.
(Other stellar clusters with more general equations of state
similar to polytropic stars can also be manufactured to
provide simple models.)

The stability of such an isothermal sphere depends
on the relation between its total energy and its total
entropy. Systems of the same total energy may have
different entropies depending on their size and internal
distribution. If the entropy has a local maximum for a
given energy, then that configuration is stable to small
fluctuations (but possibly metastable to large changes).
If the entropy does not have a local maximum, then the
system of a given energy can redistribute itself internally
to increase its entropy, and the situation is unstable. Such
analysis, originally done by Antonov, for an isothermal
sphere confined to a spherical box shows that, if the
ratio of the central to the boundary density exceeds 709,
the system becomes unstable. It tends to evolve away
from the isothermal sphere density distribution into a
denser central core surrounded by a much less dense halo.
Similar core–halo evolution is also found in numerical
simulations. Its underlying dynamical mechanism is the
slow evaporation of stars which have accumulated just
enough energy to escape by their interactions with the
fluctuating gravitational field of neighboring stars. Since
the total gravitational energy of the isolated sysem is
conserved, its core becomes denser with its energy more
negative in order to compensate the positive total energy
of the escaping stars.

An infinite statistically homogeneous system pro-
vides a contrasting application of gravitational thermo-
dynamics. The cosmological many-body problem is an
example. In its simplest case, we start with a uniform
random (Poisson) distribution of identical point masses
throughout the universe and ask how this distribution
changes as the universe expands. In the usual Einstein–
Friedmann cosmological models, the cosmological expan-
sion exactly compensates the smooth long-range compo-
nent of the gravitational field. This leaves only the rela-
tively local fluctuations caused by the discreteness of the
particle gravitational fields and by any clustering. These
fluctuations can be described by an equation of state which
incorporates the gravitational interaction into thermody-
namic quantities such as the internal energy and pressure.

Copyright © Nature Publishing Group 2001
Brunel Road, Houndmills, Basingstoke, Hampshire, RG21 6XS, UK Registered No. 785998
and Institute of Physics Publishing 2001
Dirac House, Temple Back, Bristol, BS1 6BE, UK 7



Stellar Dynamics E N C Y C L O P E D I A O F A S T R O N O M Y AN D A S T R O P H Y S I C S

Because the universe generally expands more slowly than
the timescale for particle configurations within local fluc-
tuations to change, it undergoes a quasi-equilibrium evo-
lution. At any time an equilibrium thermodynamic state
provides a good description of the clustering. Its thermo-
dynamic quantities change slowly as the universe expands
adiabatically.

Infinite statistically homogeneous systems have a
uniform density when averaged over sufficiently large
scales or over an ensemble of smaller scales. These infinite
systems are characterized by the fluctuations over various
scales of macroscopic quantities around their averages.
The fluctuations most closely related to observations are
the particle distribution functions f (N, V ) which give
the probability for finding N particles (e.g. galaxies)
in a randomly placed volume of size V . Applying
thermodynamic fluctuation theory to the cosmological
many-body equation of state gives a relatively simple
formula for this distribution:

f (N, V ) = N̄(1 − b)

N !
[N̄(1 − b) + Nb]N−1 e−N̄(1−b)−Nb. (16)

Here N̄ = n̄V is the average number in the volume
V for the average number density n̄. The quantity
b = −W/2K is the ratio of the gravitational correlation
energy to twice the kinetic energy of random motions,
averaged over all volumes of size V having a particular
shape. The correlation energy, W , is the integral of the r−1

interparticle gravitational potential multiplied by the two-
particle correlation function ξ(r) over the volume. ξ(r) is
the average excess over the random Poisson probability
for finding a particle in a differential volume element at a
distance r from another particle.

In a completely uncorrelated initial Poisson distribu-
tion, ξ(r) = 0, W = 0 and consequently b = 0. In this limit,
the distribution function of equation (16) does indeed re-
duce to the standard Poisson form. As the system evolves,
regions where near-neighbor points happen to be closer
than average cluster as a result of their enhanced gravity.
These clusters subsequently cluster themselves and a hier-
archy of non-linear clustering, with a wide range of ampli-
tudes and scales, represented by the increasing value of b,
gradually builds up. In the Einstein–Friedmann universe,
this non-linear evolution of b can be calculated analytically
and it asymptotically approaches unity as the universe ex-
pands. This asymptotic limit represents bound clustering
on all scales, and is strictly reached only for 00 = 1.

A velocity distribution function can also be derived
from equation (16). Compared with the Maxwell–
Boltzmann distribution for finite isothermal spheres, the
velocity distribution function for the cosmological case
is much broader. This is because it includes all levels
of clustering, from isolated field galaxies to the richest
bound clusters. Numerical computer simulations of
the cosmological many-body system verify equation (16)
as well as its associated velocity distribution function.
Observations of galaxies on the sky and in three

dimensions, using COUNTS IN CELLS as well as VOID and near-
neighbor statistics, are also in very good agreement with
equation (16). The currently observed value of b is about
0.75.

The BBGKY kinetic hierarchy, mentioned earlier, has
also been used to examine hierarchial galaxy clustering.
It is partially solvable for the two- and three-particle
correlation functions in the linear regime. However, it
generally contains less usable observational information
than the distribution functions. There are also many more
complicated models of galaxy clustering, involving hot
and cold dark matter, various forms of initial density and
velocity perturbations, biases between the galaxies and
dark matter, etc, but their detailed applicability to our
universe remains unclear.

Many applications of these main physical descrip-
tions of stellar dynamics—particle orbits, kinetic theory,
distribution functions and thermodynamics—have devel-
oped over the last century. They have helped provide an
understanding of the formation, relaxation and dynami-
cal evolution of star clusters within galaxies. They help
explain the streaming motions and arms of spiral galaxies,
as well as the triaxial shapes of elliptical galaxies. Com-
bined with the possible existence and effects of massive
black holes in galactic nuclei, stellar dynamics helps de-
scribe the evolution of the nuclei and the feeding of their
black holes. On a larger scale, stellar dynamics gives a
background for understanding the formation, relaxation
and evolution of galaxy clusters, incorporating effects of
their internal dark matter. Even more generally, the princi-
ples of stellar dynamics play an important role in account-
ing for the structure of matter over the largest scales in the
universe.

Although stellar dynamics is an old and well-
established subject, it is often rejuvenated by new insights
and new applications. Some interesting areas for future
further developments include the detailed links between
dynamics and thermodynamics, implications for galaxy
clustering, galaxy and cluster merging, distributions
around black holes in galactic nuclei, counterstreaming in
galaxies and the development of stellar motions in large
star-forming regions.
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