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1 Getting from here to there. . .

The main goal of these four dynamics lectures is provide a frame-
work for understanding the evolution of matter under the influence
of its own collective gravity. In general, these problems are impos-
sible to solve exactly. One might say, “We all know Newton’s Laws,
let’s just code ’em up and let ’er rip!” The problem is that this, too,
is impossible and requires a myriad of approximations as you will
see in the next few weeks. The only way to make progress with
confidence is to develop a deeper, more general understanding of
the underlying structure implied by Newton’s Laws. An example
of such a use of smarts rather than brawn you are familiar width is
exploiting symmetries that lead to conservation laws. I will begin
with these today but this sort of thinking leads the even deeper and
more general approaches of Hamilton and Jacobi, and to ideas of
modern dynamics pioneered by Kolmorgov, Moser, Sinai, Arnold
and others.
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2 Newton’s Laws: a local description of evolution

Let’s begin with a brief, but unusual review of Newton’s Laws.
There are three basic concepts, nearly common sense for physicists,
that lead axiomatically to Newton’s Laws:

1. Space & Time: space is Euclidean (3-d) and time is one dimen-
sional (R 3 R ).

2. Galilean relativity

Laws of physics are the same at all times in inertial refer-
ence frames;
All coordinate systems in uniform rectilinear motion are
themselves inertial.

3. Newton’s Principle: The initial state of a system (positions and
velocities of its points) uniquely determine its future.

Now, let’s define what we mean by motion:

motion: x to x to dt

velocity:
dx
dt

acceleration:
dx2

dt2
etc.

(1)

We can visualize this as a system of points moving in configuration
space with time:

Finally, derivation of Newton’s equations. According to deter-
minacy, the motion of a system is determined uniquely by its initial
positions and velocities. BUT NOT its acceleration. Therefore, if
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Figure 1: Motion of the system

each point in the system is not at inertial rest, then the position and
velocities must determine the acceleration:

ẍ d2x
dt2

F x ẋ t

By looking at symmetries of this equation and using the 3 prin-
ciples, one can straightway, derive the all of the classic conserva-
tion laws such as the independence to an absolute origin, isotropy of
space, and others. For the remainder of today, I will describe some
simple but important examples: 1-d, 2-d and 3-d motion.

3 1-d motion

Physicists commonly use 1-d systems to understand basic princi-
ple. However, the 1-d dynamical system is very special and quite
different than general reality. Nonetheless, it has the advantage of
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being fully solvable (remember, in general, Newton’s Laws can not
be solved).

Newton’s equation for a particle in 1-d motion is:

ẍ f x

We usually define the kinetic energy for such as system as:

T
1
2
ẋ2 1

2
mv2

Similarly the work done is the force expended along the path. Since
the path is one-dimensional, we have:

U x
x

xo
f q dq

where xo x to and the minus sign accounts for the work done on
the system. Note that

U x determines f x uniquely1: f x dU dx;

U x Uo leaves the equations of motions unchanged.

The total energy is E T U . Alternatively, we know what to
do with equations like this. Multiplying by ẋ, we have a perfect
differential:

dE
dt

dT
dt

dU
dt

ẋẍ
dU
dt

ẋ ẍ f x 0

Ok, this should have been mostly review. Now let’s take a dif-
ferent point of view. The equation of motion, ẍ f x is a second
order, non-linear differential equation. One may always write an n-
th order ODE as n first-order ODEs. In this case, the equations of

1This only works in 1-d in general.
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motion are equivalent to
ẋ y
ẏ f x

(2)
Rather than considering this to be a formal scheme for finding the
explicit solution x p t , consider the solution in coordinates x y:

x

y=dx/dt

phase
curve

phase point

x

y=dx/dt

equilibrium

Figure 2: The phase curves for a one-dimensional system of motion

Note that this construction is true to the spirit of Newton’s Principle.

3.1 Examples
3.1.1 Simple harmonic motion

3.1.2 General potential

3.1.3 Solution for phase curves

4 Systems with many degrees of freedom

Nearly all systems of interest will have many degrees of freedom.
However, one can not solve the general case of an arbitrary potential
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with even two degrees of freedom! We have to rely on examples
and attempt to identify fundamental models (e.g. simple harmonic
motion).

4.1 2-d motion

The equation of motion becomes:

ẍ f x

where x x1 x2 , f f1 x f2 x , etc. This is easily generalized
to higher dimensions.

Following the one-dimensional case, we call the system conser-
vative if f !U

!x "U . Continuing, we have:

ẍ "U x
ẋ ẍ ẋ "U x
d
dt
ẋ2

2
d
dt
U x

which immediately leads to dE dt 0. As before, if we know x ẋ
at t to, then the trajectories like within the domain x s.t. U x E .
In standard lingo, the point is trapped in the potential well.

As in the one-dimensional case, we may look at the solution ge-
ometrically. The second-order ODE in two variables becomes four
first-order couple ODEs. Three-dimensional phase curves describ-
ing the motion on the now four-dimensional space2. Projecting the
phase curves into x1 x2 give the trajectory or orbit of the motion.
Note:

The orbits may self intersect but not the phase curves (Why?).
2Can’t call it a plane any more. . .
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We may say that the conservation of energy, E , restricts the
phase curves to a three-dimensional hypersurface of phase space.
Often, other conservation laws are able to further restrict the di-
mensionality of the phase curves.

For every degree of freedom, the phase space has two dimen-
sions. In particular:

For 1 degree of freedom, we have 2-d space.
For 2 degrees of freedom, we have 4-d space.
For 3 degree of freedom, we have 6-d space.
And for 3N degrees of freedom, we have a 6N-d space.

However, in one-dimension, we have one conserved quantity which
means that motion is one-dimensional. Similarly, in two-dimensions,
conservation of energy leads to motion in not more than a three-
dimensional space. In a two-degree of freedom system, a addi-
tional conserved quantities may be found. For example, the potential
V x1 x2 x2

1 qx2
2 2 has admits two energy like conserved quan-

tities because the system is separable. Each new conservation law
(or integral of the motion) reduces the dimensionality of the hyper-
space by one. And each one corresponds to some symmetry. (To
what symmetry does the conservation of energy correspond?) This
is a simpler statement of a deep theorem in Lagrangian dynamics
called Noether’s Theorem which states that conservation laws cor-
respond to symmetries and vice versa.

5 Central fields

So far, everything we have discussed has been for a general force.
Gravity has some very special properties. Consider the work done
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along a path in space for a conservative force. The work done is:

W
s2

s1
ds "U

2

1
dU U 2 U 1

In other words, the work done in going from Point (1) to Point (2)
does not depend on the path taken. This implies that the work done
along a round trip vanishes. Using Stokes’ theorem:

C
ds f 0

S
da " f n

where S is the area inclosed by the path C and n is the outward
normal to path. This implies that " f 0 and therefore f "U .
So we have proven: A force field is conservative if and only if the
work along any path depends only on the end points of the path.

A potential is called central (with center at 0) if it depends only
on the radius from the center. Clearly, every central field is con-
servative. In addition, since we may express the central force as
f f r er, we have:

W
s2

s1
ds f

r2

r1
dr f r

and it follows that
U r

r
dr f r

just like a one-dimensional system! For example, Newton’s law of
Gravity is

f r K
x
r3

with potential
U r K

1
r
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We can exploit this further. For a central force, angular momen-
tum, L x ẋ, relative to the origin of the central force is also
conserved. Explicitly,

dL
dt

ẋ ẋ x ẍ U r x er 0

Because L is a vector quantity, this is really three conserved quanti-
ties. Referring to the table above, we see that we have 6 1 3 2
dimensions in phase space and, yes, the central force problem is
reducible to one-dimensional motion and therefore completely solv-
able!

Kepler’s laws, explicit solution of orbits, etc.

5.1 Equations of motion for systems of points: 3N degrees of
freedom

This is a simple consequence and generalization of everything we
have discussed so far . . .

We will look at the complexities of this system in a few days.
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