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1 Liouville’s Theorem

Liouville’s theorem is a fairly straightforward consequence of Hamil-
tonian dynamics. There are a number of ways to derive this and I
will give you a slightly different discussion than the ones found in
Goldstein or Landau & Lifshitz, one which is closer to numerical
practice.
Assume for simplicity that H H p q but independent of time.

Consider the resulting 2n-dimensional phase space and note that
Hamilton’s equations,

ṗ !H
!q

q̇ !H
!q

defines a vector field or a flow in that phase space; at each point p q
we can compute a direction. Of course by construction, the flow
in this field is the solution to Hamilton’s equations. Define a “flow
operator”, gt which takes a phase-space point forward by time t. A
mathematician would write this as gt : p 0 q 0 p t q t .
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Liouville’s theorem states: the flow defined by Hamilton’s equa-
tions preserves phase-space volume for any region of phase space ".
In notation, we have

gt volume of " volume of "

The proof is amazingly simple. Consider gt as t 0. Suppose
ẋ f x . Then gt x x f x t O t2 . Let V t volume of " .
Then if # f 0, gt preserves volume. Explicitly,

V t
" 0

dx !gtx
!x

expresses the usual construction from multivariate calculus where
the quantity in is the Jacobian of the transformation. Now:

!gt x
!x

I ! f
!x
t O t2

where I is the identity matrix. Therefore:
!gt x
!x

1 t$
i

! fi
!xi

O t2

1 t# f O t2

Putting this together, we have

V t
" 0

dx 1 t# f O t2

and therefore
dV t
dt " 0

dx# f O t t 0
" 0

dx# f

Finally, for Hamilton’s equations,

f !H !q
!H !p
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and therefore

# f !
!p

!H
!q

!
!q

!H
!p

0

and that’s the proof. Since the flow is defined by the vector f, Li-
ouville’s theorem is sometimes states as: Hamiltonian follow is in-
compressible. There are two immediate corollaries, one of which
we touched on earlier:

Phase trajectories don’t cross (see earlier as a consequence of
Newton’s Principle).

A boundary in phase space always encloses the same group of
initial conditions.

2 Liouville’s equation

In studying galaxies for example, we would like to be able to ap-
ply Liouville’s theorem to an ensemble of n points in phase space.
Although this is ungainly to start, it turns out that one can make an
interesting approximation in the limit n % to get a simple gov-
erning equation for the ensemble. There isn’t time to go into this in
detail, but I will sketch the ideas here and quote the result.
Define f p q as the distribution of points in phase space. That

is, the number of points in some volume dV is given by dN
f p q dpdq f p q dV . How does dN evolve with time? We
have the machinery for this now and we find:

gtdN gt f p q t gtdV

f p q t ! f
!p

!H
!q

! f
!q

!H
!p

tdV
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where the latter expression is valid in the limit t 0. Now the total
rate of change of dN with time is
dN
dt

d f p q dV
dt

gt f p q t gtdV

! f p q t
!t

! f
!p

!H
!q

! f
!q

!H
!p

dV

or
d f p q

dt
! f p q t

!t
! f
!q

!H
!p

! f
!p

!H
!q

If phase space is never created or destroyed (e.g. as in a system of
stars or dark matter halo), we have d f dt 0. This is called Liou-
ville’s equation. Again, notice that p and q are arbitrary canonical
coordinates and therefore the quantity

!H
!p

! f
!q

!H
!q

! f
!p

must be coordinate independent and is often denoted H f and called
the Poisson bracket. Liouville’s equation then takes the simple form

d f
dt

! f
!t

H f

Note that this is true for any function of space, not just a phase-space
distribution function. In particular, take any f independent of time;
f is then an integral of motion and and Liouville’s equation takes
the form H f 0. In words, an integral of motion commutes with
the Hamiltonian.

3 The Boltzmann and Vlasov equations

The lectures so far have emphasized principle. We have considered
one particle in a given field, ignoring how that field is generated.
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We have considered n particles in their mutual field, again assum-
ing that the gravitational potential has some known form. But as
astronomers we must confront specific observations and, for exam-
ple, want to represent a galaxy without the dependence on individual
stars. For a fixed total gravitational mass, one way of doing this is
taking the limit n %. Then, rather than looking at individual de-
grees of freedom, we consider the evolution of a distribution of par-
ticles in phase space (non-interacting dust, if you will). To derive an
analog to equations of motion, we begin with Liouville’s equation

! f N

!t
H f N 0

where the superscript N denotes a distribution forN particles: f N
f z1 z2 zN where z p q . In the limit N %, we expect that
the z j are completely uncorrelated. The indices are obviously arbi-
trary, it is sufficient to derive from Liouville’s equation an expression
that only involves f 1 . One begins by integrating Liouville’s equa-
tion over all coordinates with indices 2 3 N . After a fair bit
of algebraic manipulation and careful consideration of correlations,
one arrives at the following:

! f 1

!t
!H
!p1

! f 1 z1 t
!q1

!H
!q1

! f 1 z1 t
!p1

0

This equation governs the evolution of the single particle distribution
function in the large-scale field of the entire system. One often uses
the shorthand notation f f 1 and writes

d f
dt

! f
!t

H f

This is called the collisionless Boltzmann equation (or sometimes
the Vlasov equation). In this form it looks just like the Liouville’s
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equation but the derivation is not a trivial one. The procedure which
I have glossed over here is known as the 1 N expansion or the
BBGKY hierarchy1. If we retain the first term in 1 N, which in-
volves the correlated distribution of two particles, we have the Fokker-
Planck equation which is important in modeling globular clusters,
galactic nuclei and other dense systems where the collisionless ap-
proximation does not apply.

4 Jeans’ Theorem

Although the similarity between the collisionless Boltzmann equa-
tion and the Liouville equation is deep, the coincidence in form al-
lows us to exploit all of the same mathematical machinery. The most
important of these consequences is called Jeans’ Theorem which
says:
1. Any steady-state solution of the collisionless Boltzmann equa-
tion depends on phase space through the integrals of motion of
orbits in the gravitational potential.

2. Any function of the integrals of motion satisfy the time-independent
collisionless Boltzmann equation.

The proof is both short and illustrative:
1. If f is a steady-state solution, f is an integral of the motion and
therefore only depends itself on integrals of the motion. Let
depend on the independent variables yi: f f yi . Using
the Liouville form, we have

d f
dt

0 $
i

! f
!yi

dyi
dt $

i

! f
!yi

H yi

1I recall that Bogoliubov, Born, Green, Kirkwood & Yvon all worked on this at about the same
time.
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Since the yi are independent, this can only be true if H yi 0;
in other words, the yi are constants of the motion.

2. Assume that f f I1 I5 (we can have at most 5 constants
of the motion since time-independence implies energy conser-
vation). Then,

d f
dt

5

$
i 1

! f
!Ii

dIi
dt

and therefore d f dt 0 since all the Ii are constants of the
motion.

As an important practical consequence, then, if we know f I for
a given system, the problem is completely solved! Unfortunately,
the theorem does not tell us what these integrals are or how many of
them there are. Fortunately, we already have some insight. In sys-
tems where action-angle variables describe all orbits in phase space
(e.g. we can solve the H-J equation for the gravitationally bound
system), the actions are constants of the motion and the angles vary
linearly with time. In fact, one can prove that a time-independent
distribution function must depend on actions alone; and, in general,
the number of constants of the motion necessary to describe the sys-
tem will be equal to its dimension. There are some notable excep-
tions that occur when the frequencies are degenerate. In this case,
we may transform to a new set of variables where the one or more
of the angle oscillation frequencies are zero. Then the angles are
conserved too. The most notable case is Kepler’s problem which
has three degenerate frequencies and therefore two extra constants
of the motion. These correspond the orbit being closed and non-
precessing.
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5 Astronomical examples and associated distribu-
tion functions

5.1 One-dimensional slab

Distribution of stars varies only in the vertical direction. Therefore,
the distribution function f f E f̃ Iz since E H Iz .

5.2 Two-degree of freedom problem: motion in a disk

Here there are two degrees of freedom. We have seen discussed in
the context of orbit classification the interpretation of the radial and
azimuthal actions. The distribution function is then f f Ir I&
f̃ E h .

5.3 Three-degree of freedom problem: motion in a sphere (e.g.
globular cluster or giant cluster galaxy)

This is quite similar to the disk problem if the velocity distribution
has no preferred axis. Because there are two tangential directions,
the third action is another angular-momentum, I' and the distribution
function is often written f Ir I& I' f̃ E J Jz , where J is the total
angular momentum of the orbit and Jz is its projection along the z-
axis.

6 Jeans’ equations
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