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The Early Universe 

Notes based on Teaching Company lectures, and associated 
undergraduate text – with some additional material added.  

1) From 1 µs to 1 s: quark confinement; particle freezout. 
 
2) From 1 s to 3 minutes: Big Bang Nucleosynthesis. 
 
3) Before 1 ns: Supersymmetry; baryogenesis; unification.   

Overview: The Early Universe 

Simple Friedmann equation for the radiation era: 
 

E(a) = Ωr,o
1/2 a-2   gives (using Ωr,o = 8.4 × 10-5) 

   
a = 2.09 × 10-10 h72

½ ts
½ 

 

T = 1.31 × 1010 h72
-½ ts

-½  K   =  1.14 h72
-½ ts

-½  MeV 

Note: this relation is modified somewhat at earlier times when other 
species (e.g. e+, e-) are thermally produced. 
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Quark/gluon plasma 

Quark 
confinement 

p+ / p-  
annihilation 

Neutrinos 
decouple 

Helium 
synthesis 

e+ / e-  
annihilation 

Accelerators recreate the early universe 

High temperatures = high energy collisions 
 Particle accelerators reproduce these collisions 
 They recreate the conditions of the early universe. 

Higher Temperature 
Faster Motion 

Lower Temperature 
Slower Motion 



2 

Electric fields accelerate 
the particles 

Detectors are immense 

Particle creation and detection 

Z0 detection at UA1 detector Z0 decay at DELPHI detector 

Many accelerators collide single particles head on (e+e-, pp) 
 Fundamental laws of physics 
 
Also possible to collide whole nuclei (Pb-Pb or Au-Au) 
 Recreates the quark gluon plasma 

Primary result: 
the quark-gluon 
plasma behaves 
like a liquid! 
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particle creation and annihilation 

With high enough energy, particle collisions can generate 
particle-antiparticle pairs:  e.g.  γ + γ  x+ + x- 
 
Need thermal energy: kBT  ≥ mxc2 to generate this. 
So kBTthreshold ~ mxc2 provides a threshold temperature. 
(e.g. e+/e- at 0.5 MeV = 6 GK (5s);  p+/p- at 1 GeV = 1013 K (1µs)  

However, at any temperature, particle-antiparticle annihilation 
can occur: e.g.  x+ + x-  γ + γ  



3 

Below the threshold temperature 
proton electron photon 

Gas at 1 billion K 

Photons 
Energy exchange 

Particle 
KE 

At LTE the photons have a planck function, with energy density: 
 
         uγ = ργc2 = gγ                       where gγ = 2 for both spins 

8π5 (kBT)4 
30 (hc)3 

Above the threshold temperature 
anti-electron electron photon 
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We now have γ, e+ and e- all present, with total energy density: 
 
         u = ρc2 = g*                      where g* = 5.5  (=2 + (2+2)×⅞ ) 

8π5 (kBT)4 
30 (hc)3 
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Higher g* shortens expansion timescale 

Since tH = 1/H = (3/8πGρ)½ and ρc2 = g*
 

 
Then g* enters a(t), giving faster expansion timescales at earlier 
times than our simple relation. 
 
In terms of temp/energy:   TMeV  ~  1.5 g*

−¼ ts
−½   

8π5 (kBT)4 
30 (hc)3 
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Big Bang Nucleosynthesis 

Near 1 minute, T ~ 108 K, and nuclear reactions can occur. Unlike 
stars, there are free neutrons, which can form deuterium, and then 
He-4. The conditions don’t allow heavier elements to form. 

Late 1940s: Robert Herman George Gamow and Ralph Alpher analyze nuclear 
reactions in a hot big bang. Their aim was to make all the elements.  

Neutron/proton equilibrium 

The neutron/proton number ratio is a key parameter. 
 
Before 1 sec, an eqlm population is maintained by neutrino 
reactions:  

Recall, neutrons are slightly heavier than protons:  
Δm = mn – mp = 939.6 – 938.3 = 1.3 MeV 

n+!e ! p+ e" + energy

p+! e + energy! n+ e+

Hence eqlm population ratio given by Boltzmann factor: 

Nn
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mp

!

"
##

$

%
&&

3/2

exp '
(mn 'mp )c2

kBT

!

"
##

$

%
&&

So, when kBT >> 1MeV, (Nn/Np) ≈ 1. 
This drops below 1.0 near 1sec, as T drops below 1 MeV 
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Neutrino decoupling freezes the neutron/proton ratio 

Near 1 sec, the neutrino’s decouple and the interconversion of 
neutrons and protons ceases. We say the reaction freezes out. 
 
What’s going on: Reaction timescale:  treac = 1/(n<σv>)  
With: n ~ a-3, σW ~ T2 ~ a-2, v ~ c;  so treac ~ a5 is slowing down 
   

When treac > tH then the number of “collisions” drops to zero. 
 

 The reaction is frozen. 

Expansion timescale:  tH = 2tage ~ a2 is also slowing down, but 
not as fast. 

This occurs near 1 sec (T ~ 0.8 MeV), when Nn/Np ~ 1/5. 
The further delay of ~5 minutes until deuterium formation 
brings this ratio down to 1/7.3   (neutron half-life = 10.2 min) 
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Helium Abundance 

In simple form, helium abundance arises from full conversion of 
neutrons into He-4. Hence: 
 

NHe = ½ Nn 
 
Hence the mass fraction of helium is: 

 
YHe  =  (4 × ½ Nn) / (Nn + Np)  =  2/(1 + Np/Nn) 

 
Hence, for Np/Nn = 7.3, we have YHe = 0.24 
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Making deuterium 

deuterium 
proton neutron 

Making Helium 

Notice: this is a strong reaction, and quite different from the 
weak reaction that occurs within stars: 

 p + p  D + e+ + νe  

γ 
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The final abundances depend somewhat on the cosmic 
parameters, in particular the photon/nucleon ratio or, 
equivalently, the nucleon density. 

Comparison with measured primordial abundances then 
allows one to “measure” the baryon density during BBNS. 

Because we know the scale factor during BBNS (because we 
know the temperature), then we can convert the baryon 
density during BBNS to a baryon density today  Ωb 
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The deuterium in water is a relic from the 
Big Bang. It’s abundance (~10-5) reveals 
the conditions in the 3-minute old furnace. 
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Even Earlier Times 

1)  Supersymmetric particle creation and dark matter 

2)  Force unification: electroweak and GUT 

3)  Baryogenesis: matter/antimatter asymmetry. 
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Super-symmetric particles 
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Forces depend on temperature due to vacuum polarization 

The Forces of Nature 
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Abdus Salam 
1926 - 1996 

Steven Weinberg 
b. 1933 

Te
m

pe
ra

tu
re

: T
 (K

) D
ensity: ρ

tot   (tons/cm
3) 

10-10 

10-10 

1010 

1020 

1030 

Time: t (seconds) 

10-15 10-20 

1 

1080 

1040 

Scale Factor: S 
10-30 

1 10-20 10-30 

10-25 

10-40 

Electroweak 
unification 

Higgs mechanism: 
particles acquire mass 
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Conditions for matter/anti-matter asymmetry 

Andrei Sakharov  
(1921 - 1989) 

1)  Quarks and leptons must be able 
to interconvert. 

2)  Matter and anti-matter reactions 
must differ somehow 

3)  The process must occur in a 
non-equilibrium state, that 
happens during times of rapid 
change. 

Hunt for CP violation currently a 
primary goal of the LHC. 
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Matter/anti-matter annihilation 

Before annihilation: 
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End of Early Universe 


