

Above/below threshold temperatures: particle creation and annihilation

With high enough energy, particle collisions can generate particle-antiparticle pairs: e.g. $\gamma + \gamma \rightarrow x^+ + x^-$

Need thermal energy: $k_B T \ge m_x c^2$ to generate this. So $k_B T_{threshold} \sim m_x c^2$ provides a *threshold* temperature. (e.g. e⁺/e⁻ at 0.5 MeV = 6 GK (5s); p⁺/p⁻ at 1 GeV = 10¹³ K (1µs)

However, at *any* temperature, particle-antiparticle annihilation can occur: e.g. $x^+ + x^- \not \to \gamma + \gamma$

Higher g* shortens expansion timescale

Since
$$t_H = 1/H = (3/8\pi G\rho)^{\frac{1}{2}}$$
 and $\rho c^2 = g_* \frac{8\pi^5 (k_B T)^2}{30 (hc)^3}$

Then g_{*} enters a(t), giving faster expansion timescales at earlier times than our simple relation.

In terms of temp/energy: $~T_{MeV} ~\sim~ 1.5~g_*^{-1\!\!\!/_4} \, t_s^{-1\!\!\!/_2}$

Neutron/proton equilibrium

The neutron/proton number ratio is a key parameter.

Before 1 sec, an eqlm population is maintained by *neutrino* reactions: $n + v_e \rightarrow p + e^- + energy$

$$p + \overline{v_e} + energy \rightarrow n + e^+$$

Recall, neutrons are slightly heavier than protons: $\Delta m = m_n - m_p = 939.6 - 938.3 = 1.3 \text{ MeV}$

Hence eqlm population ratio given by Boltzmann factor:

$$\frac{N_n}{N_p} = \left(\frac{m_n}{m_p}\right)^{3/2} \exp\left(-\frac{(m_n - m_p)c^2}{k_B T}\right)$$

So, when $k_BT>>1 MeV,$ $(N_n/N_p)\approx 1.$ This drops below 1.0 near 1sec, as T drops below 1 MeV

Neutrino decoupling freezes the neutron/proton ratio

Near 1 sec, the neutrino's *decouple* and the interconversion of neutrons and protons ceases. We say the reaction *freezes out*.

What's going on: Reaction timescale: $t_{reac} = 1/(n < \sigma v >)$ With: $n \sim a^{-3}$, $\sigma_W \sim T^2 \sim a^{-2}$, $v \sim c$; so $t_{reac} \sim a^5$ is slowing down

Expansion timescale: $t_{\rm H}$ = $2t_{\rm age}$ \sim a^2 is also slowing down, but not as fast.

When $t_{reac} > t_H$ then the number of "collisions" drops to zero. \rightarrow The reaction is frozen.

This occurs near 1 sec (T \sim 0.8 MeV), when N_n/N_p \sim 1/5. The further delay of \sim 5 minutes until deuterium formation brings this ratio down to 1/7.3 (neutron half-life = 10.2 min)

Helium Abundance

In simple form, helium abundance arises from full conversion of neutrons into He-4. Hence:

$$N_{He} = \frac{1}{2} N_n$$

Hence the mass fraction of helium is:

$$Y_{He} = (4 \times \frac{1}{2} N_n) / (N_n + N_p) = 2/(1 + N_p/N_n)$$

Hence, for $N_p/N_n = 7.3$, we have $Y_{He} = 0.24$

Force unification	
Forces depend on temperature due to vacuum polarization	

The Forces of Nature					
	Gravity	Weak	Electro- magnetism	Strong	
Example	Planetary orbits	Radioactive decay	Electrons in atoms	Protons in nucleus	
Acts on	All	All	Charged particles	Quarks & gluons	
Carrying boson	Graviton	W & Z	Photon	Gluons	
Relative strength	10 ⁻³⁸	10-4	10 ⁻²	1	

Conditions for matter/anti-matter asymmetry

Andrei Sakharov

(1921 - 1989)

- 1) Quarks and leptons must be able to interconvert.
- 2) Matter and anti-matter reactions must differ somehow
- The process must occur in a non-equilibrium state, that happens during times of rapid change.

Hunt for CP violation currently a primary goal of the LHC.

