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(1) Introduction
(a) The Good News

Cosmology is in a truly golden era: now is a great time to learn it!

Some recent observational developments have been:

the !-century long uncertainty in Ho is now over:   Ho = 72  5 km s-1 Mpc-1

the long search for a decent standard candle is also over:   SNIa seem to work well
COBE & WMAP have now measured the CMB spectrum & anisotropy with high accuracy
2dFGRS & SDSS have recently mapped cosmologically significant local structures
observations at z ~1-6 are almost routine, and probe a significant slice of cosmic history

In close partnership, theoretical developments and their applications are increasingly robust:

The cosmic constituents and their relative proportions have been ascertained
    = 0.73  0.02 : dark energy dominates the current universe

DM = 0.26  0.02 : dark matter is very important, particularly in structure formation
b     = 0.04  0.01 : baryons are a trace (though vital!) component
     = 5.0 " 10-5 : CMB photons reveal an early hot phase
     = 3.4 " 10-5 : CNB neutrinos have been observed indirectly in the CMB power spectrum.

An "ordinary" FRW cosmological world model has emerged as being completely adequate
The FRW parameters have been measured      "The Concordance Model" 
This yields a reliable framework for charting cosmic history -- ie we now know t(z)
A number of puzzles are removed by invoking an early period of inflation.

A detailed theory exists tracing the average conditions from very early times
a fairly full description of t < 1s exists, though it is not yet well tested
nucleosynthesis at t ~ 1-5 mins nicely recovers the observed light element abundances
(in fact, this measures conditions at t ~ 1s, when the neutron/proton ratio was fixed)
the theory accurately describes recombination at ~#Myr and the origin of the CMB

A detailed theory now exists which describes the growth of perturbations
Starting from inflation, a natural spectrum of fluctations can be followed to z~1000
here it matches the CMB anisotropies in great detail
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it can then be followed to z=0, where it accurately matches local structure

After thousands of years of wild speculation, the true story of creation is finally emerging
   we are living through (and participating in!) a historic period of intellectual growth
   in the future, our time will be recalled much like that of Copernicus, Newton, or Darwin.

(b) The Not-So-Good News
Before we get too dizzy with euphoria, let's regain some humility by recalling:

we have no idea what the dark matter or dark energy are actually made of (ie 96% !)
although inflation is a promising idea, it is far from proven and its cause is unknown
the origin of the baryon asymmetry is only guessed at
why particular cosmological values are favoured is unknown beyond anthropic arguments.
why there is something and not nothing is as unknown now as it was in Aristotle's day.

Of course, these (and many other) puzzles are not really bad news at all:
they signify a rich subject in good health, with more fascinating work to be done.
In any case, it would be unseemly to fully understand Creation after only a couple of generations.

(c) Our Path Through the Subject
Understandably, "The New Cosmology" has attracted enormous interest and effort

   The subject is now mature and sophisticated -- much is well beyond our/my range
   Our aim will be to outline the overall framework, while ignoring details

Here is our path through the subject:
Following tradition, we begin with a discussion of some global cosmic properties:

isotropy, homogeneity, expansion, structure, composition
Introduce the five cosmic constituents: Baryons; Photons; Neutrinos; Dark Matter; Dark Energy

Properties: densities; pressures; cooling; evolution.
We need a General Relativistic framework, comprising two inter-dependent parts:

geometry: metrics define the spacetime
dynamics: contents define coefficients of the metric and hence its time evolution

We clarify some confusing aspects of geometry on an expanding coordinate grid:
various types of distance and horizon

We introduce a toolkit for measuring intrinsic properties at cosmological distances.
these allow us to convert redshift (our prime observable) to distance; time; etc.

Such relations lead to the classic tests of the world model parameters.
As you may know, several deep conundrums/puzzles emerge from the standard picture:

the so-called flatness; horizon; structure; anti-matter; problems
These are "explained" by introducing an early period of rapid inflation.

we note how inflation solves some of these problems, and how it might be caused
We briefly outline the evolution of the hot early universe:

the various "eras" : quark; hadron; lepton; radiation; matter; dark energy
a brief treatment of cosmic nucleosynthesis, and recombination

We see recombination directly as the Cosmic Microwave Background (CMB)
its primary characteristics are its remarkable isotropy and purity of black body form
it provides the strongest evidence for the hot big bang
it concludes our review of homogeneous Cosmology.

Following homogeneous Cosmology, we are ready to start discussing inhomogeneities
These provide the starting point for our next Topic: structure formation.

        

(2) Global Properties
(a) Large Scale Isotropy

To humans, the universe seems highly anisotropic
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down is solid, up is the sky, with the sun, moon, & stars in specific directions
even statistically, stars prefer the milky way while bright galaxies cluster in Virgo and Coma

Only at much fainter levels and much greater distances does isotropy begin to emerge
Here are some nice examples: [images]

2 million faint (mJ < 17) galaxies cover ~1 sr with only slight structure visible
31,000 radio sources (typical z ~ 1) uniformly cover the northern hemisphere
the CMB with the galaxy & dipole removed is isotropic to one part in 105

At faint levels (i.e. large scales) the Universe seems remarkably isotropic

(b) The Cosmological Principle
Ever since Copernicus, we are loath to assign Earth a special location
Going one step further, we promote egalitarianism to a "Cosmological Principle"

   The Universe looks, statistically, the same from all locations
go to any galaxy -- you will witness an isotropic universe.

One consequence of this is that the Universe has no edge or center
for a Euclidean space this also means the universe is infinite
Note, this need not be true for other, closed, geometries (see later).

There is also a "Strong Cosmological Principle"   =   Cosmological Principle   +   "at all times"
   in addition to uniformity, it explicitly states the universe does not evolve

this underpins the Steady State Cosmology advocated by Hoyle, Bondi & Gold in the 50s & 60s
The evidence for evolution first came in the 1960s and has grown stronger ever since   [ song ].

   we won't consider the Steady State cosmology further.

(c) Large Scale Homogeneity
It is easy to show that:   isotropy   +   cosmological principle   =   homogeneity

   all locations are (statistically) equivalent (e.g. have the same mean density)

This is sometimes extended to postulate that the laws of physics are also global
The observations of familiar spectral features in distant galaxies certainly supports this

Homogeneity only sets in on large enough scales, somewhere between 100 Mpc & 1 Gpc   [images] 
On smaller scales, of course, one encounters much inhomogeneity (see below)

(d) Small Scale Structure
The Universe's small scale inhomogeneity is much more obvious to us than its global homogeneity.
The inhomogeneity appears as a hierarchy of structures: stars; galaxies; clusters; tapestry

There is also a maximum scale (~150 Mpc) for inhomogeneity before homogeneity sets in [images]

Our cosmology must explain the origin, development, and maximum scale of all this structure.

(e) Expansion

(i) The Hubble Law
As soon as galaxy spectra were measured it became clear that most were redshifted 
In 1929 Hubble found a "roughly linear" relation between redshift and distance: cz  d
as data improved, this relation was confirmed and has strengthened ever since [image]

Don't confuse establishing the linear relation with measuring its gradient:
It took ~75 years to achieve 10% uncertainty in the gradient, Ho (see below)
This is primarily because calibrating the distance scale is notoriously difficult.
The current best estimate for Ho is 72  5 km/s/Mpc   (72 " 10-6 Myr-1 in psm units)
Note, it is still customary to quote measurements scaled to h = 100 km/s/Mpc
For example, "The luminosity of M87 is 2.3 " 1011 h-2 L "   [Topic 1.3k]
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Note also that there is always some small scatter (~few 100 km/s) in the Hubble relation
   galaxy redshifts have two components:

the global "Hubble Flow" (arising from cosmic expansion)
a small "peculiar" velocity (arising as the galaxy responds to the gravity of its neighbors).

["peculiar" comes from Latin: "peculium", meaning "private property" - specific to it alone]

(ii) Everyone Sees the Same Law
At first glance the Hubble Law seems to violate the Cosmological Principle: 

   galaxies appear to move radially away from us suggesting we are somehow central   [image]
However, its linear form ensures that all locations witness the same relation:

Consider two (vector) locations k and p and the vector field: v = H r centered on us (at O)
We see p move at vp = H p;   so how does an observer located on k see p move?
use primes to denote values measured by k [image]:

p' = p - k   and   v'p = vp - vk = Hp - Hk = H(p - k) = Hp'

Hence, for any point p, k sees a Hubble Law: v'p = H p'
   if we see v = Hr then so does everyone else!
   the cosmological principle still holds true

Since everyone witnesses the same Hubble Law, we conclude that:
   the Universe itself is undergoing isotropic expansion with form v = H r   [image]

This is a remarkable and profound result.

(f) The Big Bang
The linear nature of the Hubble law has a second fascinating consequence:
Tracing the expansion backwards, there was a moment when all galaxies were together

This singular event is called "The Big Bang"

The term was coined in 1952 by Hoyle to gently mock opponents of his Steady State Cosmology.

If no forces act to accelerate or decelerate the expansion, then v(t) = const, 
In that case, the singular event ocurred at a time tH,o = r/v = 1/Ho in the past

tH,o = Ho
-1 = 9.76 h-1 Gyr   is called The Current Hubble Time

If the average expansion rate isn't too different from its current value, then tH,o  current age.
For Ho = 72 km/s/Mpc, tH,o = 13.5 Gyr      a ballpark figure for the age of the Universe.

(g) Cosmic Time
Being physics graduates, we are often nervous when time is introduced: 
does it depend on our location or motion, i.e. is it different for different observers?

In this case, you can relax: the time we've introduced is a proper time
   it is measured by inertial observers, and can be agreed upon by everyone.

In fact, the cosmological principle, coupled with global expansion, guarantees a universal time:
   fundamental observers may synchronize clocks when the local density reaches some value
   since these observers are at rest w.r.t. their local frame, they measure proper time

If we start the clocks at the Big Bang (ie set tBB to 0 at  = ), we have cosmic time:
   we can all agree on the age of the universe, and the time/age at a given redshift: t(z).

(h) Olbers' Paradox
Olbers (~1820) is credited with first noticing that a dark night sky has cosmological implications.
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Imagine an infinitely large, old, static, homogeneous universe.   [image] 
Every sight line intersects a star's surface, whose surface brightness is independent of its distance

   hence the entire sky should shine with the surface brightness of stars!
However it doesn't, so one or more of the assumptions must be wrong.

(Absorption doesn't help: dust ultimately heats to reach equilibrium with the radiation field).

Let's use modern numbers to quickly assess how this paradox might constrain cosmology.
The mean local cosmic luminosity density is   L ~ 108 LB,  Mpc-3 with M/L ~ 10   [Topic 4.3]

   L ~ 10-32 erg s-1 cm-3;   n  ~ 108 Mpc-3;    ~ 10-31 gm cm-3  (   ~ 0.01);    ~ R 2

There are several ways to cast these numbers, all confirming the Universe's emptiness & darkness:

mfp = 1 / n  ~ 1018 Mpc :   a typical sight line terminates at an enormous distance.

the sky brightness, J, out to distance D is    L r2 d  dr / 4 r2 = LD/4    erg s-1 cm-2 sr-1  [image] 
for DCMB (now) ~ 40 Glyr we find J ~ 10-4.5 erg s-1 cm-2 sr-1    µ ~ 24m arcsec-2 ie very dark!
to get J ~ 1010 erg s-1 cm-2 sr-1 (5000K black body) we need D ~ 1018 Mpc (as before). 
Clearly, given its current emptiness, a dark sky only rules out gigantic old static Universes.

A 5000K radiation field has energy density u ~ 30 erg cm3.   Can stars generate this?
At L ~ 10-32 erg s-1 cm-3 it would take them 1026 years !

A bright sky requires our static universe to be both gigantic and immensely old.

But real stars cannot shine that long anyway, nor can they create so much light: 
Converting all baryons to light:  u = 0.04 crit c2 ~ 10-8 erg cm-3, well below what is needed 
Stated differently: in a bright sky universe the radiation alone would contribute   rad ~ 109 !

Stars alone cannot yield Olbers' bright sky, even in an old enough and big enough Universe.

There is, of course, another source of radiation: the 3000K photosphere of the CMB. 
The omnidirectional CMB is uncannily like the classic Olbers' bright sky, except for one detail....
Redshift kills its surface brightness by a factor (1 + z)4 ~ 1012   [sec 8d]
In the absense of redshift, we would indeed witness a lethal sky with J ~ 106 Watt m-2 sr-1

(roughly equivalent, of course, to filling the sky with solar disks, as Olbers' originally conceived)

For this light source, then, it is expansion which keeps the sky dark.

        

(3) More on Expansion

(a) Expanding Coordinate Grids
When thinking about cosmic dynamics, it helps to think of an expanding coordinate grid
Imagine a (flat) sheet of graph paper which is slowly getting bigger, carrying the grid lines with it [image].

One can imagine three kinds of motion:

Points (ink dots) in the paper participate in its motion. They are fixed on the grid.
Such points are called fundamental observers: their motion is the Hubble flow.
As already shown in [sec 2eii] they all witness the same Hubble law.
In introductory texts, this is the expanding raisin bread analogy.

Points (ants, if you like) can also "walk" over the paper, crossing grid lines.
This motion is the peculiar velocity: it is a true space velocity.

Now imagine a speedy ant which always runs quickly at a constant rate in a straight line
this represents a photon, crossing the expanding space, always moving locally at c.
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From General Relativity, we know that in Cosmology we may need to consider a curved grid.
For this, one imagines our dots and ants on an expanding sphere with longitude/latitude lines.
Fortunately, it turns out that expanding flat graph paper is all that's needed for our Universe.

(b) The Scale Factor a(t) & Comoving Coordinates
How do we treat this kind of coordinate system mathematically?
Easy, we consider the grid and its expansion separately.

First notice that the Hubble law preserves shapes:   patterns of galaxies becomes bigger patterns
   for a set of i points, cosmic expansion gives:   ri(t) = a(t) ri(to), for a fiducial time to

Here, a(t) is a universal scalar function of time, and is called the scale factor
a(t) simply tracks how the separation of galaxies changes over time, starting at a=0 at the big bang.

   Finding the form for a(t) is a holy grail in cosmology.

Sensibly, we assign the current time special status: to = now;   a(to) = 1   and r(to) = ro.
Hence:

the current values, ro, provide the coordinate grid, and are called comoving coordinates
as the grid expands, the comoving coordinates do not change
at any time, the physical coordinate of an object is:   r = a(t) ro
by setting a(to) = 1, we ensure that in the past, a < 1 while in the future a > 1.

For example, at the time of recombination, a  0.001
The comoving distance to proto-M87 is still 15 Mpc, but its physical distance is only 15 kpc.

Notice that r and ro are both proper distances:
they tell us how many non-expanding rulers fit end-to-end from here to the galaxy.

Later we introduce several pseudo-distances: eg luminosity & angular diameter distance; DL, DA.
these are not true (proper) distances, but convenient functions of distance.

Warning:  symbol conventions for physical/comoving/pseudo distances varies greatly
You must be careful when reading texts: "is this r or d physical or comoving?"

   In these notes I will try to be consistent: r = physical; ro = comoving; D = pseudo.

(c) The Hubble Parameter: H(t)
With our new expanding coordinate grid, how does H fit in?
To find out, take time derivatives of r(t) = a(t) " r(to):

dr/dt = v(t) = da/dt " r(to) = (1/a) da/dt r(t)

But this is simply:   v(t) = H(t) r(t)   with H(t) = (1/a) da/dt
   we have found that the Hubble relation applies at all times

  H(a)    H(t)  =  1/a da/dt     and     dr/dt  =  v  =  H r  

In general, H(t) and a(t) both vary with time
For the current epoch, we write H(to)  Ho and it has units of inverse time
Our best current estimate for Ho is [sec 3g] 2.34 " 10-18 Hz (or 72 km/s/Mpc)

(d) The Velocity-Distance Relation & The Hubble Law
At this point, we need to clarify something: there are two apparently similar relations.

the theoretical "proper" velocity-distance relation:   v = H r
the observational redshift-distance "Hubble Law":   cz = H D

These are, in fact, somewhat different.

The theoretical relation v = H r is globally exact, though it is observationally inaccessible:
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both v and r are "proper" quantities, ie as measured in a local rest frame. For example
for r:   how many non-expanding rulers must be laid down between us and the galaxy?
after 1 second, v additional rulers must be laid down, where v = H r.
notice that the values are all measured at the same cosmic time:
we deal with distant galaxies as they are, right now, not as we see them.

The Hubble Law is strictly observational:
1 + z = obs/ em; and cz rather than v(z) is sometimes taken as a "Doppler velocity"
D is usually a luminosity distance, which matches the proper distance only at low z.
both z and D apply to the time when the light set out, not the current time
during the light's journey, the galaxy moved further away and, possibly, slowed down

At high z, several factors break linearity, indeed this deviation is used to measure qo.

At low redshift the Hubble Law and the velocity-distance relation look the same
Cosmic expansion is best described by v = Hr; it is exact and holds everywhere at all times
the Hubble Law, cz = H D, only provides imperfect observational access to this cosmic expansion.

(e) The Hubble Sphere
Let's push the velocity-distance law to great distances:
For Ho = 100 km/s/Mpc, we have :

at r = 10 Mpc,       v = 103 km/s
at r = 10 Gpc,       v = 106 km/s
at r = 1000 Gpc,   v = 108 km/s

Yes, these velocities are faster than light:   special relativity does not apply to this motion:
   it arises from expansion of space, not motion through space.

Can we see the galaxies which recede faster than light?
The light they emit moves through space at speed c towards us
but over time the wavefronts get further from us, at speed v - c > 0      we will never see them!
There is a critical distance rH,o = c/Ho = 3.0 h-1 Gpc which is now receeding at v = Ho rH,o = c

  rH,o  =  c/Ho  is called the Hubble distance;   where, right now, galaxies recede at c  

For constant rate of expansion, we will ultimately see everything inside a sphere of radius rH,o
Only if v slows down significantly will we be able see beyond rH,o.
These, and other potentially confusing things, should become clearer later [sec 7].

(f) The Link Between Redshift and Scale Factor
When we first encounter redshift, we view it as a Doppler shift due to a galaxy's motion
while this is appropriate for peculiar velocities, it is not for expansion "velocities"

A more mature view sees the light embedded in space, getting stretched on its way to us
This kind of redshift is called a Cosmological Redshift   [image]

With this view, redshift clearly measures the stretch factor between emission and observation

  o / e   =   1 + z   =   a(to) / a(te)   =   1 / a(te)    

since the current scale factor a(to) = 1 
This is a fundamental relation & globally exact
It tells us the relative change in size since the light set out

Some examples:

at cz = 30,000 km/s, z = 0.1      a(te) = 1/1.1 = 0.909      90%
at z = 1, a = 0.5   all galaxies were half their current separation (8 " the current density)
at z = 6, a = 0.14   (currently, the most distant QSOs)
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at z = 1000, a = 0.1%   (at recombination, everything is 103" closer; 109" denser)

(g) Measuring Distances and Ho

The struggle to measure reliable astronomical distances and Ho has a long history   [image]. 
Rather than consider that history, we shall briefly summarize the current (1995 - 2005) situation.
A good review is Mould's EAA 1997 article (quoted Ho values are taken from this article).
Also Freedman and Madore's ARAA 2010 article.

To derive Ho one must measure both distances and redshifts
Distance measurements take two rather different forms:

ladder methods which depend on nearby calibration such as parallax & Cepheids
one shot methods which need no calibration and rely only on known physical properties

Redshifts, while easily measured, need correction for peculiar motion:
our motion includes: the sun's orbit; MW motion in local group; Virgocentric infall. 
the target galaxy is chosen to be a group/cluster member, & the group's mean redshift is used.

(i) Ladder Method
In elementary texts, the distance ladder is often presented with many rungs [image] 
In practice, there are really only three:

Use the Hipparcos satellite to get trigonometric parallaxes of nearby Cepheids
   calibrate Period-Luminosity (PL) relation

Use HST to get Cepheid distances to nearby ( 25 Mpc) galaxies
   calibrate Tully-Fisher (TF) & Fundamental-Plane (FP) (& other) methods

Use TF, FP (& other) distances to groups where peculiar velocities are unimportant.
   group mean redshifts & distances now give Ho

Let's outline these various steps & techniques.

Cepheid variables

This class of pulsating stars defines a tight period-luminosity(-color) relation [images] 
   measure period to get luminosity and hence distance

They are luminous stars (MV: -2 to -6) and hence can be seen to considerable distances (~25 Mpc by HST)
However, they are also rare: the nearest is 250pc away, and only 10 have parallax distances measured to 10%.

Historically, the PL relation was calibrated by Main Sequence fitting to open clusters containing Cepheids
Now, Hipparcos provides direct trigonometric calibration (eg Perryman et al 1997)
However, this calibration still needs to be improved   (eg using future astrometric mission GAIA).

The distance to the LMC plays a very important role     (and also still needs to be improved)
   it contains enough Cepheids to define the PL relation in m (not M)
   hence extragalactic Cepheids yield relative distances to the LMC

the current best estimate for the LMC is:  m-M  =  18.44  0.03    48.7  0.7 kpc   (uses E(B-V) = 0.1)

The HST Key Project has now measured 800 Cepheids in ~18 galaxies out to ~25 Mpc.
These galaxies were then used to calibrate the following methods:

TF:  Tully-Fisher Relation

This is a luminosity-linewidth relation for spirals   [Topic 5.5b]
scatter is minimum in the near IR (I, H), hence the method is often referred to as "IRTF"
about 20 spirals now have Cepheid distances
about 25 groups/clusters out to 10,000 km/s have TF distances

   Ho = 71  8   (eg Sakai et al 1999)

FP:  Fundamental Plane Relation

http://www.astro.virginia.edu/class/whittle/astr553/Topic16/t16_H0_changes.html
http://www.astro.virginia.edu/class/whittle/astr553/Topic16/t16_Mould_H0.pdf
http://www.astro.virginia.edu/class/whittle/astr553/Topic16/t16_ARAA_2010.pdf
http://www.astro.virginia.edu/class/whittle/astr553/Topic16/t16_distance_ladder.html
http://www.astro.virginia.edu/class/whittle/astr553/Topic16/t16_cepheids.html
http://www.astro.virginia.edu/class/whittle/astr553/Topic05/Lecture_5.html#sec5b


This is a refinement of the luminosity-linewidth (Faber-Jackson) relation for ellipticals   [Topic 7.4b]
Either Dn-  (isophotal diameter/dispersion) or surface brightness/radius/dispersion relations
since no Cepheids in Es, calibration uses Es in groups with Cepheid distances (eg Virgo, Fornax, Leo)
many groups/clusters out to 10,000 km/s now have FP distances

   Ho = 78  10   (eg Mould et al 1996; Kelson et al 1999)

SNIa:  WD binary thermonuclear detonation

These are very luminous, so well suited to qo studies (high z), but also useful for Ho (lower z)
the light curves aren't all the same; but peak luminosity correlates with fading rate (and color) [image] 
unfortunately, very few SNIa have ocurred in galaxies with Cepheid distances      calibration not ideal

   Ho = 68  6   (eg Gibson et al 1999)

SBF:  Surface Brightness Fluctuations

Consider a set of CCD pixels recording the light from an E galaxy, each one with perfect S/N ratio
there is still variation between the pixels because of N fluctuations in # stars
Although the mean surface brightness is independent of distance, the variation is not

   nearer galaxies have fewer stars per pix      larger variation.

difficulties: contamination by globular clusters; color/population dependency; calibration.
HST can use this method out to about 7000 km/s

   Ho = 69  7   (eg Ferrarese et al 1999)

HST Key Project  combines all these methods (plus GC & PN luminosity function methods)

   Ho = 72  7   km s-1 Mpc-1   (eg Friedman et al 2001)   [image]

(ii) Direct Methods
Let's briefly look at four direct distance measurement methods.

EPM:  Expanding Photospheres Method   (originally from Baade & Wesselink)

This method applies to all pulsating/expanding photospheres -- particularly Type II (core collapse) SN
angular size is derived from flux, temperature and emissivity (black body = 1)
linear size is derived from integrating velocity (linewidth) over time

   distance, by comparing angular and linear sizes.

VLBI Masers in Nuclear Gas Disks

So far, only one good example of this method exists:   NGC 4258,   Miyoshi et al 1995   [ Topic 14.4e]
a compact (~1pc) molecular disk orbits central black hole
VLBI of H2O masers gives (Keplerian) velocities and proper motions

   distance, by comparing linear and angular velocities.

Gravitational Lensing Time Delays

2 QSO images have different light paths with different physical lengths
this path difference is given by the time delay between QSOs light curved (via cross-correlation).
the calculated path difference depends on projected mass density and linear scale

  distance by comparing observed angular scale and calculated linear scale

SZ:  Sunyaev-Zeldovich Effect in Clusters

Hot electrons in galaxy cluster ICMs do two things:

they generate X-rays via bremsstrahlumg:   Lx    ne
2 rc

3 Tx
1/2

they Compton scatter CMB photons:   ( T/T)CMB    ne rc Tx

Overall, these methods give distances that agree, statistically, with the ladder methods.
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(4) Components, & Their Densities & Pressures
(a) The Stage and its Contents

The current universe contains (we think) just five components:

Dark Energy
Dark Matter
Baryonic Matter
Photons
Neutrinos

You should not think of these as "merely" components: like furniture sitting in a room
In general relativity, the contents help to define the space-time in which they reside
(the furniture actually influences the shape and size of the room!)

To understand the global properties, we therefore need a complete itinerary of the components
Most important, we need to know their densities: 
We also need to know how densities change with expansion:  = o a-x

It transpires (see below) that this is equivalent to knowing a component's Pressure

For several components,  and p are both additive: tot = i   and   ptot = pi

(b) Critical Density & Spatial Geometry
There is an extremely important link between cosmic density and spatial geometry.
We will need a few equations which we justify later on [sec 6a], so just accept them for now.
Here's the cosmic energy (Friedmann) equation, using scale factor "a"   [sec 6a iv]

(da/dt)2   - (8 G/3)a2    =   -kc2/R0

This matches the basic form KE + PE = Etot, with Etot appearing as a spatial curvature:

k = +1      -ve Etot      closed geometry   
k =  -1      +ve Etot      open geometry   
k =   0      zero Etot      flat geometry

Hence, we can define a critical density c which yields a flat geometry (k=0):

  (1/a2)(da/dt)2   =   H2   =   (8 G/3) c     giving   c   =   3H2/(8 G)  

c   =   2.65 " 10-7 h2 M pc-3   =   1.80 " 10-29 h2 gm cm-3   =   10.8 h2 mp m-3

Notice c varies with time through H(t) (or h), and we'll write its current value as c,o
However, once set, k (-1,0,+1) is fixed for all time. 
In particular, if k = 0 now (flat geometry) then we always have a flat geometry

   if o = c,o now, then  = c always   (worth stressing, since this seems to be the case).

With such tiny values, it is convenient to express densities relative to c using    / c

The table lists the measured current relative densities for the various cosmic components
(values are for the concordence model, ~10% uncertainties)
(other functions are given which we'll come to in a moment)

    Component          o / c,o            w        
x = 3(1+w) 

 = o a-x
x = 2/(3+3w) 

a  tx
1 + 3w 

sign accel

Dark Energy 0.73 -1 0 a  et -2  

Dark Matter 0.23  0 3 2/3 1

Baryons 0.04  0 3 2/3 1

http://www.astro.virginia.edu/class/whittle/astr553/Topic16/Lecture_16.html#sec6a
http://www.astro.virginia.edu/class/whittle/astr553/Topic16/Lecture_16.html#sec6aiv


Photons 5.0 " 10-5 1/3 4 1/2 2

Neutrinos 3.4 " 10-5 1/3 4 1/2 2

The current best estimate for the total density is tot =  i = 1.00  0.02

   we live in a universe with "flat" spatial geometry

This is one of the most important discoveries in recent cosmology.

Warning: please don't continue to view tot as defining the future of the Universe,  it doesn't.
this was appropriate in the pre-lambda days (  = 0), when it was common to state:

if tot > 1, the Universe will turn around, collapse, and end in a big crunch.
if tot < 1, the Universe will expand forever.

with   0, one cannot infer the future simply from tot.
Instead, tot only fixes the spatial geometry (open/flat/closed), not the future.

(c) Pressure & Equation of State Parameter, w
In modern cosmology there is much talk of "w" the "equation of state" parameter. 
It specifies a (simple) relation between pressure and density: p = w  c2.

 pressure is a fraction w of a region's total energy density.
We are told "pressures add to gravity" in GR, so we must consider them.

I feel this is an unnecessarily obtuse approach.
Here is a more straightforward approach (which amounts to the same thing).

Focus instead on how cosmic densities change with expansion:   (a)  =  o a-x 
For (simple, cold) matter, x = 3 :   density  1 / volume   (i.e. simple conservation of matter)

But in cosmology, x  3 is also possible.
In such cases energy is either leaving or entering our expanding box.
One can consider this as "work done" by a pressure.

Let's use local conservation of energy to express this:   dQ = dU + p dV = 0   so   dU = -p dV
or using U =  c2 V   and V  a3   we have:

d(  c2 a3) = -p d(a3)

d  c2 a3   +   c2 3a2 da   = -p 3a2 da           now divide by 3a2c2 da

a/3 d /da   +      = -p/c2

Now use  = o a-x   so that d /da  =  -x o a-x / a  =  -x  / a,   we get:

-x /3a  +     =   -p/c2

giving an expression for the pressure, and a relation between x and w:

p = (x/3  -  1) c2      w c2

Since  x  =  3(1 + w)  we recover our density change, but now in terms of w:

  =  o a-x  =  o a-3(1+w)

The table above gives the values of w and x for the various components. 
Let's make sure we understand them:

For a non-relativistc gas: p = nkT and 3/2kT = # m<v2>
so p = ( o/m) (m <v2>/3)   =   oc2 " <v2>/3c2 

   w = <v2>/3c2   0   so that x = 3   giving   m = m,o a-3



Basically, the thermal energy is << rest energy
so cooling during expansion doesn't contribute to the change in 

For a photon gas: p = 1/3 ur  =  1/3 rc2 
   w = 1/3   so that x = 4   giving   r = r,o a-4

Basically, when a photon gas expands its pressure does work on the surroundings
Energy is lost from the expanding box because the photons are redshifted.

For a vacuum energy, its density doesn't change with expansion, so we have: 
dU = -p dV          vc2 dV = -p dV          p = - vc2 

   w = -1   and we recover x = 0,   giving   v = v,o a0 = v,o

Basically, you must provide energy to create more vacuum
Negative pressure is tension: imagine a strange piston with a little "strange water" in it.
You pull extremely hard, with force F = p " A, with p = 9 " 1020 dyne cm-2   (~1015 atm)  and A = 1 cm2

the piston slowly moves out by d = 1 cm -- you have spent F " d = 9 " 1020 erg of energy.
To your surprise, the piston now contains an additional cm3 of water!
Your 9 " 1020 erg were converted to 9 " 1020/c2 = 1 gm of new water.
(Note: since dark energy is 6.8 " 10-30 gm cm-3, it only requires 6 " 10-9 dyne cm-2 tension to create.
However, you can't verify this experimentally because there is vacuum on both sides of the piston!).

You may ask: Where does the energy go to (photons) come from (vacuum)? 
The answer is rather subtle:

In a Newtonian framework: it goes to (comes from) the gravitational binding energy of the Universe.
In a GR framework: it appears as modifications to the geometry terms in Gµ

We'll return to this later.

(d) Density Changes with Scale Factor
Summarizing what we just found:

  matter:   m(a)  =   m,o a-3  =   m,o (1 + z)3     as expected by "conservation of mass"

  radiation:   r(a)   =   r,o a-4  =   r,o (1 + z)4     since n   a-3 and E   a-1 from redshift

  vacuum:   v(a)   =   v,o  =   const     space is space

So the relative densities of the three components changes with expansion: [image] 
Depending on which component dominates the density (hence gravity), we find three different eras: 

The Radiation Era; 
The Matter Era; 
The Dark Energy Era.

Quantitatively, we can identify times when the various component densities are equal:
(aeq and zeq are easily evaluated, while teq requires the integral relations from [sec 6c v] )

   density match   condition   a @ equality    z @ equality    t @ equality  

v = m 0.73 = 0.27 a-3 0.72 0.39 9.43 Gyr

v = rel 0.73 = 8.4 " 10-5 a-4 0.103 8.3 615 Myr

b =   0.04 a-3 = 5.0 " 10-5 a-4  1.25 " 10-3 800 620 kyr

m = rel   0.27 a-3 = 8.4 " 10-5 a-4  3.11 " 10-4 3200 57 kyr

m =   0.27 a-3 = 5.0 " 10-5 a-4  1.85 " 10-4 5400 22 kyr

Note that here rel refers to the sum of photons and neutrinos (relativistic matter)
Likewise m refers to the sum of baryons and CDM (non-relativistic matter)
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(e) Rates of Expansion In Each Era
In general time dependencies are complicated [sec 6c].
However, for flat geometries with a single component, we find simple forms for a(t)
From the cosmic energy equation, with k = 0, o = c,o and  = o a-3(1+w), we have

(da/dt)2  =  (8 G/3)a2   =  (8 G/3)a2
o a-3(1+w)  =  Ho

2 o/ c,o a-(1+3w)  =  Ho
2 a-(1+3w)

 da/dt   =   Ho a-(1+3w)/2       a(1+3w)/2 da   =   Ho  dt      a   =   [(3 + 3w)/2 . t/tH]2/(3+3w)

Now, as it happens the universe is flat, and there are times when just one component dominates:

  during the radiation era:    a      t1/2  

  during the matter era:    a      t2/3  

  during the vacuum era:    a      et   (from da/dt  a)  

The function a(t) from zero to the present indeed matches these simple relations [ see image and sec 6c iii ]

(f) The Five Components
Let's now look briefly at the 5 cosmic components

(i) Dark Energy
This component has had a checkered history:

Famously introduced in 1917 by Einstein to balance matter & yield a static universe
Dumped in 1929 when Hubble discovered cosmic expansion
Resurrected in 1930s-40s when large Ho implies tH < t    (loitering model)
Dumped in 1960s-70s when Ho revised down, giving tH > t
Resurrected in 1980s when tH < tGC; & M ~ 0.3 but inflation suggests tot = 1
Discovered in 1998 with accelerating expansion: q0 = # M - v < 0
Here to stay. Now (2011) 4 independent & consistent confirmations.

Dark Energy is generic term; there are three main possibilities: 
A "cosmological constant" appearing in Einstein's equations as an integration constant, .
Quantum mechanical energy of the vacuum. Both vacuum energy and  have w=-1
Quintessence: a quantum field with -1 < w < -1/3, evolving slowly over time.
We dont yet know which of these dark energy is:

Acceleration only demands w < -1/3, while current observations constrain w < -0.9
   vacuum energy is currently favoured (which can be treated as a  term)

Current theoretical understanding is ~zero
a "natural" energy density has vc2 = m4/(hc)3   for "natural mass" m
if m = Planck mass = (hc/G)#      vc2 ~ 3 " 10126 eV cm-3   (~1093 gm cm-3   !!)
Observed vc2 ~ 103 eV cm-3, or ~10123 " smaller; maybe the worst guess ever.
The particle mass which does give the correct value is m ~ 10-3 eV. No known candidates.
Studying DE in the lab is very difficult - only energy differences can be measured 
(The Casimir effect, for example, shows the vacuum is "live" but not by how much).

(ii) Dark Matter
Introduced by Zwicky in 1930s to explain high galaxy cluster dispersions. Then forgotten.
Re-introduced in the 1970s to explain spiral rotation curves at large radii
Increasingly important on larger scales: galaxies; binaries; clusters; large scale flows.
Necessary to create large scale structure rapidly from CMB (baryons alone are inadequate).
Combined methods yield DM = 0.23  0.04

Theoretical understanding ~zero, though some properties are constrained.
Non-baryonic (ie neither protons nor neutrons); BBNS rules out high b
Non-relativistic after kT ~ 1 MeV      cold dark matter (CDM)      clusters efficiently
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Interacts only via weak and gravitational forces (dark matter)
Possibly made of "WIMPS" -- Weakly Interacting Massive Particles
WIMP candidates?   not known; maybe lightest supersymmetric particle (LSP).

Current laboratory searches underway. Nothing yet found.

(iii) Baryons
In this context, baryons refers to neutrons, protons, and electrons
Big Bang NucleoSynthesis (BBNS) and CMB power spectra together give: b = 0.044  0.005

Primordial H/He abundances are 75/25 by mass or 12/1 by number
Since then, stars have converted ~2% (by mass) into heavier elements.

Only 10% of baryons are luminous, i.e. are found in stars
The other 90% is mosly in diffuse ionized gas surounding galaxies.

Mass to light ratios help inter-convert:   m = jX " (M/L)X   in band X   [Topic 1.3j]
For the local universe, jB  2.0 " 108 h L ,B Mpc-3   (  9 Watt AU-3)
This yields several fiducial values:

using crit we have (M/L)crit = 1400 h (M/L) ,B      7 million kg/Watt (very dark!)
using m = 0.27 crit we have (M/L)m = 375      close to some clusters
using b = 0.04 crit we have (M/L)b = 55      significantly more than most galaxies

The universe is optically quite dark      on average, ~7000 tonnes/Watt.

(iv) Photons
The CMB is by far the strongest of all the cosmic background radiation fields [images]
This is true for both number density, n  ~ 410 cm-3, and energy density, u  ~ 0.26 eV cm-3.
It's energy density is even comparable to the photon and thermal components of the local ISM.

The CMB spectrum spans 500µ to 1 cm, and peaks at 1.0 mm (B ) or 1.9 mm (B )
It is an exceedingly accurate black body, with TCMB = 2.725 (  0.002 K = 0.07%) [image]

Summarizing the integrated energy and number densities for a BB radiation field, we have:
[note: here a = 8 5 k4/15h3c3 = 4 /c is the radiation constant and NOT the scale factor!].

  Energy density  
    u  =  a T4  =  7.56 " 10-15 T4 erg cm-3

 
    ucmb  =  4.17 " 10-13 erg cm-3  =  0.26 eV cm-3  

  Energy flux
    J  =  uc/4   =  caT4/4   =  T4/   =  1.80 " 10-5 T4 erg s-1 cm-2 sr-1

   
    Jcmb  =  9.94 " 10-4 erg s-1 cm-2 sr-1

  Number density
    n  =  a T3/2.7kB  =  20.3 T3 cm-3

    ncmb  =  410 cm-3

  Number flux
    N  =  nc/4    =  4.84 " 1010 cm-2 s-1 sr-1

    Ncmb  =  9.78 " 1011 cm-2 s-1 sr-1

(v) Neutrinos
Like all particles, neutrinos were created out of energy in the early Universe.
Since they are stable, they survive to today in great, though undetectable, numbers.
There are three families, e   µ    , each with particle/anti-particle pairs    six in all.

They decoupled at t ~ 1s, z ~ 1010, kT ~ 1 MeV, and have travelled unscattered ever since
   Cosmic Neutrino Background (CNB) similar to, but much younger than, the CMB

Since kT >> m c2 (  0?) at decoupling, they were relativistic  "hot" dark matter.
They behave like a relativistic gas (  = 4/3; w = 1/3) similar to the CMB.

Two facts make the CNB slightly different from the CMB
Shortly after  decoupling the e+e- pairs annihilate (at kT ~ 0.5 MeV) 
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this puts energy & entropy into the CMB but not the CNB      T  > T
one can show [sec 12] that T  = (11/4)1/3 T    giving T  = 1.94 K

Neutrinos obey Fermi-Dirac statistics, whereas photons obey Bose-Einstein statistics.
Summing over all six species, one can show [sec 12]: 

u ,tot   =   0.68 u
n ,tot   =   9/11 n      =   335 cm-3   (currently)

The total energy density in 's and 's (after e+e- annihilation) is:   urel = 1.68 u  = 1.68 a T 4

The total relativistic contribution to  is:   rel   =      +      =   8.4 " 10-5   (today)
This is the value to use when evaluating the expansion rate during the radiation era.

What if neutrinos don't have zero rest mass? 
Currently, kT  = 1.67 " 10-4 eV, so only neutrino masses larger than this change things
For each species, one finds a current  = m (eV) / 94 h-2

Hence, a mean mass of 8 eV per species will give tot = 1 and close the Universe.
Laboratory limits are presently well above this, though structure formation suggests  is small.
(note: neutrino oscillation experiments only give mass differences ~ 0.05eV, not masses)

(g) Cosmic Cooling
Consistent with your intuition, cosmic contents cool with cosmic expansion
Ultimately, this occurs because particles move into receding regions so seem to have lower energy
There are two situations to consider: photons & matter (strictly: relativistic & non-relativistic).

(i) Photon (& Neutrino) Cooling
The relativistic content includes both photons and neutrinos: both have a black body spectrum
Expansion preserves the black body shape but at a new temperature: Tz   =   To(1+z)   =  To / a 
Let's quickly show that this is the case: [image]

Currently, we have a = 1; To = 2.725K; & BB photon number density at frequency o:
n( o) d o   =   (8 /c3) o

2 [exp(h o/kTo) - 1]-1 d o

At a time when a  1, the corresponding frequency is  = o / a,   giving  d  = d o / a
conserving photon numbers gives their density change: n( ) d    =   n( o) / a3 d o
Inserting these into the current BB spectrum, we get:
a3 n( ) d    =   (8 /c3) 2 a2[exp(h a/kTo) - 1]-1 a d ,   giving
n( ) d    =   (8 /c3) 2 [exp(h /kToa-1) - 1]-1 d 

This is another black body spectrum, with:

  T = To / a   =   To (1 + z)  

This has been verified using absorption in the CI fine structure lines in damped Ly  systems:
e.g. at z = 1.8, the CI line ratios imply TCMB ~ 7.6 K,   as expected.

(ii) Matter (& Galaxy) Cooling
A similar analysis can be applied to the cooling of non-relativistic matter particles
There are two key differences:

The distribution is Maxwell-Boltzmann, in which T  < v2 >, while for BB: T  <  >
The number density is not set by the temperature, but enters as a separate variable.

First let's derive the matter equivalent of the redshift relation  = o / a,   ie v = vo / a
In time dt, a peculiar velocity v traverses a distance r = v dt
at this new location, the peculiar velocity is reduced below v by the Hubble flow: 

dv = -Hr = -H v dt = (-1/a)(da/dt) v dt = -(v/a)da      dv/v = -da/a   with solution:
v  a-1 or, for v = vo at a = 1, we have   v = vo/a

   as time passes a increases & v decreases; hence random motions decrease and T drops

A gas of particles in thermal equilibrium has a Maxwell-Boltzmann (MB) velocity distribution:
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n(vo)dvo = 4 No vo
2 (m/2 kTo)3/2 exp(-mvo

2 / kTo) dvo     (N and n in number per cm3)

at time when a  1, we have v = vo/a   and   dv = dvo/a
particle conservation also requires   n(v)dv = n(vo)/a3 dvo and N = No/a3

Substituting these into the MB relation, we get:

a3 n(v)dv   =   4  a3N a2v2 (m/2 kTo)3/2 exp(-mv2a2 / kTo) a dv
n(v)dv   =   4  N v2 (m/2 k(To/a2))3/2 exp(-mv2 / k(To/a2)) a dv

which is another MB distribution with temperature:

  T  =  To / a2  =  To (1 + z)2  

Thus, a gas undergoing passive cosmic expansion cools according to T    a-2

which is faster than the CMB photons for which T    a-1

   At z ~ 1100 both have T  3000K; at z = 0, T   2.725 K, while Tmatter  2.48 mK.

In practice, this cooling for the baryonic gas never occurs: 

prior to recombination, the gas is coupled to the radiation and follows its temparature
after recombination other processes (virialization shocks, stars, AGN) heat the gas.

However, one can consider the peculiar motion of galaxies in a similar manner
Cosmic expansion is continually "cooling" their peculiar velocities, while
gravitational interaction is continually heating them (e.g. cluster virial motions).

        

(5) Cosmic Geometry: Robertson-Walker Metric
With all these preliminaries now in place, we are ready to begin a full description of the Universe.

General Relativity provides a framework for describing both geometry & dynamics
Einstein's equations of GR can be written in a deceptively compact form:   Gµ  = -8 G/c2 Tµ

Gµ  & Tµ  are both 4 " 4 matricies, suggesting 16 equations, though symmetries reduce this to 10.
The indices µ,  = 0,1,2,3 denote 1 time & 3 space coordinates (e.g. ct, x, y, z   or   ct, r, , ).
G describes the space-time geometry; it incorporates the metric.
T describes the distribution of mass-energy (µ,  = 0), and momentum (µ,  = 1,2,3) in the system
Hence the famous saying: "Mass tells space how to curve, while space tells mass how to move".

The derivation and solution of the GR equations is a huge subject unto itself.
Here we will extract only what we need.

Loosely speaking, this section looks at the geometry part, G.
The next section looks at the dynamical part, T, and how it relates to G.

(a) Space-Time Geometries
Mankind's attempt to formally describe Nature began with geometry: the properties of space
Not surprisingly, Euclid's description arose out of our local "flat" space, characterised by:

parallell lines never meet
interior angles of a triangle sum to 180o

a circle has circumference 2 r and area r2; a sphere has area 4 r2 and volume 4/3  r3

This is the geometry we first encounter in grade school, with rulers and flat graph paper.

Adding Newton's intuitively plausible independent time, t, yields a 4 coordinate space-time

Since we evolved within a "flat" space-time, Euclid's/Newton's descriptions feel deeply TRUE
However, they are not. 
Like cultural norms, their self-evident correctness merely reflects our parochial experience.
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Measure with great accuracy, visit a black hole, or traverse the Universe, and things are different.

How do we describe other possibilities?   Using metrics
A metric defines the separation, ds, of two nearby points (or events if we include time)

(i) Example 1: "Flat" Geometry
We call the Euclid space "Flat" because in 2-D it holds true on a flat surface.
For 2-D and 3-D, we have metrics:

ds2   =   dx2 + dy2   =   dr2 + r2 d 2     where ds2  (ds)2, etc.

ds2   =   dx2 + dy2 + dz2   =   dr2 + r2 (d 2 + sin2  d 2)   =   dr2 + r2 d 2

Note that the choice of cartesian or polar (or any other) coordinate system is unimportant
They are equivalent and define the same space.

With these metrics, you can recover all the results of Euclidian geometry
E.g. find the shortest lines between three points (minimize  ds) to construct a triangle

   its interior angles sum to 180o;   and so on.

(ii) Example 2: Uniform Positive Curvature
In 2-D, curved surfaces are everywhere (wineglasses, chairs, lampshades,....)
Drawing triangles on them quickly reveals interior angle sums different from 180o

In general, sums greater/smaller than 180o define positive/negatively curved surfaces [table 1].
Such surfaces have metrics which are different from those above.

Anticipating an isotropic universe, consider the simplest isotropic surface: a sphere of radius R.
Take coordinates r,  from a pole, where r is measured along the surface   [image]

ds2 = dr2 + R2 sin2(r/R) d 2

Close to the pole, (r << R) we recover the "flat" 2-D metric (ds2 = dr2 + r2d 2)
Further from the pole, curvature reduces the d 2 contribution to ds2.

If we draw a circle of radius r, the circumference is ds with r = const,  = 0 to 2  = 2  R sin(r/R).

        circumference = 2  R sin(r/R)

This is < 2 r, goes through a maximum at r = R/2 (equator) and goes to zero at r = R (antipode)  [image]

Now consider extending this metric to 3-D giving an (un-imaginable) hypersphere of "radius" R
ds2 = dr2 + R2 sin2(r/R) d 2   where d 2 = d 2 + sin2  d 2,   r is a "straight" line from origin.

To get a feel for the odd nature of this space, imagine holding a laser pointer with visible beam (r)
Turn it through 1o (d  = 1o): 

at r = 100m it sweeps sideways by 100 " (1/57.3) = 1.74m  (ds at fixed r = R sin(r/R)d )
at r = n " 100m it should sweep n " 1.74m, right?   Wrong!
as n increases, the sweep drops below the predicted linear relation   (ie R sin r/R < r)
in fact, beyond r = R " /2 the sweep begins to decrease for larger r
waving the laser wildly, its rays always pass through the remote location r = R.
A friend located at this "antipode" would see a laser "star" zooming around the sky!

If you explored geometry living in this kind of space, you would not recover the Euclidean results
In 1840 Gauss actually tried to measure the curvature of space by surveying big triangles   [image]. 
Of course, his modestly accurate measurements only recovered the Euclidean value of 180o

But in principle he could have discovered the non-Euclidean terrestrial Schwarzschild metric.
(in fact, R ~ 1AU, and a 30 km triangle deviates from 180o by ~10-8 arcsec).

Like the 2-D analog, the spherical 3-D space also has finite extent (  R) and volume (2 2R3)

(iii) Example 3: Uniform Negative Curvature
Replacing sin(r/R) by sinh(r/R) in the above metrics yields spaces of uniform negative curvature.
Unlike the 2-D sphere, it isn't posible to construct a 2-D surface with this property,
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however, a saddle does have a region of isotropic negative curvature in its center.
On this surface, circles have circumferences 2  R sinh(r/R) which is less than 2 r
Furthermore, in 3-D: two points can be infinitely far apart, and the total volume is infinite.

This table summarizes the geometrical properties of the three spaces described above   [image] :

Curvature k d 2 
coefficient

Parallel 
Lines

Triangle 
Angles

Circle 
Circumf

Sphere 
Area

Sphere 
Volume

Global 
Form

Positive   +1  R2 sin2(r/R) Converge > 180 < 2 r < 4 r2 < (4/3) r2 Closed

Flat     0  r2 Never meet   180   2 r   4 r2   (4/3) r2 Open

Negative   -1  R2 sinh2(r/R) Diverge < 180 > 2 r > 4 r2 > (4/3) r2 Open

(iv) Adding Time
It is straightforward to add an independent, Newtonian, time t, as additional coordinate.
The 3-D + 1-t metrics for positive, flat, and negative space-times become:

ds2   =   -c2 dt2   +   dr2   +   R2 sin2(r/R) (d 2   +   sin2  d 2)

ds2   =   -c2 dt2   +   dr2   +   r2 (d 2   +   sin2  d 2)     (Minkowski space-time).

ds2   =   -c2 dt2   +   dr2   +   R2 sinh2(r/R) (d 2   +   sin2  d 2)

One can also replace (d 2 + sin2  d 2) with d 2, the angle between the two events on the sky,
and group them into a single expression, using Sk(x) = sin(x),  x,  sinh(x) for k = +1, 0, -1:

ds2   =   -c2 dt2   +   dr2   +   R2 Sk
2(r/R)   d 2 

[ Note: I've adopted Peacock's notation for Sk, rather than Ryden's ]

Notice that ds2      -c2d 2,   where d  is the Lorentz invariant proper time interval.
Indeed, the second is the spacetime of special relativity, and is called Minkowski spacetime.

Notice also that the flat metric involves sums of quadratics of coordinate differentials
   flat geometry is rooted in the Pythagoraean relation   (e.g. triangles have  ang = 180o). 

Although more general geometries are curved, many are locally flat   (e.g. in 3-D: a sphere) 
   expanding the metric to first order at any location gives a quadratic form.

Such geometries are called Reimannian and the spacetimes of GR are all of this kind.   Why?
Because locally the Equivalence Principle demands a Minkowski spacetime of Special Relativity.

As you can see, the three metrics above are all of this kind: as r  0, they are locally flat. 
Of course, the second derivatives do not vanish, and it is these that define the curvature.

(b) The Robertson-Walker Metric
In the 1930s, Robertson and Walker (independently) considered metrics suitable for the Universe.
The required metrics need to describe a space-time which:

is always isotropic & homogeneous
expands (or contracts) with time

These two conditions limit the possibilities enormously

Note that in 1930s, the assumption of homogeneity & isotropy was fairly bold
But the algebraic advantages were so great it was the obvious/only option to pursue.
The degree to which these assumptions are valid depends on scale:

On large scales (> few Mpc): these assumptions are excellent [see sec 2a-c]

the RW-metric works well, and the treatment is valid.

On intermediate scales, where | /< >|   <   1 they are still useful:
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the RW-metric can be applied locally with parameters slightly different from the global ones
this approach is integral to the analysis of the early stages of galaxy formation.

On small scales, where /< >   >>   1 they are poor assumptions:

local matter dominates the metric which does not expand (planets; stars; galaxies; clusters)
electrostatic or quantum forces can also overcome the expansion (atoms, people, rulers)

The form of the RW-metric is:   [warning: other equivalent forms exist; this one is common].

  ds2   =   -c2 dt2   +   a(t)2 [ dro
2   +   Ro

2 Sk
2(ro/Ro)   d 2 ]  

where ro is the comoving proper distance (ie as measured today) to an object.

This looks very familiar!

it has the spatial form introduced above
it has a scale factor, a(t), which tracks expansion (usually, a(tnow) is set to 1)

The primary parameters of the RW-metric are:
k = +1, 0, -1   specifies +ve, flat, -ve curvature, and the corresponding Sk
Ro = current radius of curvature; units of length   (cf. Gaussian curvature:   1/Ro

2) .
a(t) = a time varying scale factor, a dimensionless function of cosmic time, t.

Much of 20th century cosmology was a struggle to find these three things.

As the universe expands, its radius of curvature increases (just like a sphere).
So why does the RW-metric only include the current radius of curvature, Ro, and not R(t)?
In fact, R(t) is present, implicitly:

one can show [6biii] that R(t) = a(t) Ro, and this factor is indeed present in the d  coefficient
ro is a comoving radius, ie as measured today, hence ro/Ro in Sk is correct at all times.

Please don't think of R(t) as "the radius of the universe"; it is a measure of spatial curvature
although for k = +1 it yields roughly the correct total volume, for k = -1 it is negative.

Also, the limiting condition near k = 0 with R       is well behaved, since R sin(r/R)      r.

It is important to recognise that the RW-metric is independent of General Relativity. 
   it comes just from requiring isotropy & homogeneity at all times.

GR enters by specifying how the curvature and scale factor depend on the universe's contents
We'll turn to this topic in a moment, after briefly getting familiar with the RW-metric.

(c) Simple Properties of the RW-Metric
Let's just check a few simple results which we derived intuitively in sec 3:

(i) Proper Time
What time do fundamental observers witness?
For them,   dro = d  = 0   and so   ds2 = -c2d 2 = -c2dt2   giving   t = 
As expected, fundamental observers experience a proper time, on which all can agree.

(ii) Proper Distance
At time t, how far away is a galaxy with current (comoving) coordiante ro?
by "how far away", we mean "what's the proper distance": how many rulers would span the gap?
Between us and it is purely radial, so d  = 0, and "at time t" means dt = 0, so the RW-metric gives

   ds = a(t) dro   and the total proper distance is r =  ds =  a(t) dro = a(t)  dro = a(t) ro
As we suspected, the proper distance, r, is simply the current (comoving) distance scaled by a(t).

(iii) Velocity-Distance Law
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Let's recover the velocity distance (expansion) relation:   [image] 
proper velocity, v, is the rate at which r increases:   dr/dt.   So, using r = a(t) ro, we have:

v   =   dr/dt   =   da/dt " ro   =   da/dt " r/a   =   (1/a) (da/dt) " r

which is our velocity distance law   v = H " r   with Hubble parameter   H = (1/a) (da/dt)

(iv) Time Dilation & Redshift
A photon emitted from a distant galaxy at re, travels to us with:   d  = 0   and   ds = 0 
(it travels along a radial null geodesic);   so:

0  =  -c2dt2  +  a2 dro
2      c dt/a  =  dro       c dt/a  =   dro  =  ro   which is constant

Two photons are emitted at te and te + te and arrive at times to and to + to
During the time te + te to to both photons are in flight and so  dt/a for this interval is the same.
But for the full trip  dt/a is also the same, so the small start/finish contributions must be equal:

te / a(te)   =   to / a(to)      to / te   =   a(to) / a(te)   =   1 / a(te)     (since a(to)      1)

This tells us that the duration of any event we witness is dilated by a factor a(te)-1

This has been nicely confirmed in the longer apparent duration of high-z SNIa light curves: [image]

Taking te and to to be the time between wavecrests of light, we have the cosmological redshift:

to / te   =   e / o   =   o / e   =   (1 + z)   =   a(te)-1

Once again, it is best to think of redshift as a change in scale factor during the photon's journey.

(v) Total Cosmic Volume
What's the total volume of a closed universe?
At comoving coordinate ro and time t, we have a radial vector of proper length:   r = a(t) ro 
however, swinging this radial vector by d  only sweeps out a distance:   a(t) Ro sin(ro/Ro) d
the full circumference is:   2  a(t) Ro sin(ro/Ro),   and the full area is:   4  a(t)2 Ro

2 sin2(ro/Ro)
to get the volume, we must integrate this area over dr from 0 to the antipole at r =  a(t) Ro

V   =   4  a(t)2 Ro
2  sin2(ro/Ro) dr   =   2 2 a(t)3 Ro

3

as expected, the volume grows with a(t)3 and is close to the value for a 2-sphere of radius R
for an open universe the integral diverges because (i) the area diverges, and (ii) r      

        

(6) Cosmic Dynamics: the Friedmann Equations
Homogeneity, isotropy and the Cosmological Principle alone have singled out the RW-metric as the only credible cosmological
spacetime. However, the RW-metric still contains some arbitrary quantities: a(t), Ro, k. These quantities are determined by
whatever generates the spacetime geometry. Einstein's General Relativity tells us this:

Gµ    =   8 G/c2 Tµ   

Spacetime is curved by the distribution of cosmic energy & momentum.
Here, µ and  are four (1 time, 3 space) coordinate indices, (eg   ct, x, y, z;   or   ct, r, , )

(a) Gravity's Field Equations

(i) Tµv :   The Energy-Momentum Tensor
Tµ  has 4 " 4 = 16 elements, arranged in a square, 
For an isotropic fluid, all the off-diagonal (cross coordinate) elements are zero:   Tµ  is diagonal.
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T0,0 = E = c2   is the total energy density

T1,1, T2,2, T3,3 = < pxpx >c2 / E   is the x-momentum density  px the x-pressure (y, z etc)

Now, pressure is isotropic, so px = py = pz = p     (don't confuse momentum p with pressure p)
So Tµ  = diag ( c2, p, p, p)     (all off-diagonal elements are zero).

(ii) Gµv :   The Curvature Tensor
So much for Tµ , what about Gµ ?
On the LHS, it provides a description of the spacetime curvature in various "directions".
In general, its components are complex combinations of 2nd order coordinate partial differentials
(it is, in effect, replacing 2 in the Newtonian Poisson equation).
[The general curvature is the Reimann tensor of rank 4,   Rµ , ,    with 44 = 256 elements.
Symmetry reduces this to the rank 2 Ricci tensor, Rµ   , and its scaler trace, the Ricci curvature, R.
Finally, the curvature is expressed as:   Gµ  = Rµ  - # gµ  R  where gµ  are the metric coefficients]

There are two very important constraints for the cosmological spacetime:
Everywhere the spacetime is locally flat      the geometry is Reimannian.

recall, this is ultimately rooted in the Equivalence Principle
Isotropy ensures all off-diagonal elements are zero:   Gµ  is diagonal

furthermore, spatial isotropy demands   G1,1 = G2,2 = G3,3

Evaluating the elements for the RW-spacetime, one obtains:

G0,0   =   3/a2 [k c2/Ro
2 + (da/dt)2]

G1,1 = G2,2 = G3,3 = -1/a2 [ 2 a (d2a/dt2)   +   k c2/Ro
2   +   (da/dt)2]

(iii) Two Cosmological Equations
Now equate these elements in Gµ  to the same elements of Tµ  & add the proportionality constant:

G0,0   =   3/a2 [k c2/Ro
2 + (da/dt)2]   =   8 G    =   8 G/c2 T0,0

Gj,j   =   -1/a2 [ 2 a (d2a/dt2)   +   k c2/Ro
2   +   (da/dt)2]   =   8 G p/c2   =   8 G/c2 Tj,j

Combining these, we arrive at two fundamentally important cosmic equations

    (da/dt)2   =   (8 G/3) a2   -   k c2/Ro
2   The Friedmann Equation, or Energy Equation  

    d2a/dt2   =   -(4 G/3) a (    +   3p/c2)    The Acceleration Equation

where k = +1, 0, -1 follows the sign of the curvature radius Ro; and a(t) is the scale factor.

In fact, the acceleration equation can be derived from the energy, using p = w c2   (i.e.  = oa-3(1+w)) 
Differentiate the Friedmann equation and cancel through by da/dt:

d2a / dt2  =  (4 G/3) [2 a + a2 d /da ]

Substitute for d /da and rearrange:

d2a / dt2  =  (4 G/3) [ 2 a - 3(1+w)a  ]  =  (-4 G/3) a [  + 3p/c2 ]

All we need, therefore, is Freedman's first equation, and our expressions for (a) = o a-3(1+w). 
  These alone give the full expansion history a(t) 

Freedman's second equation simply makes explicit the form of the acceleration. 

(iv) A Newtonian Analog
It is remarkable that essentially all these results can be found in a simple Newtonian analysis.



Consider a huge sphere uniformly but sparsely filled with rubble [image] 
Focus on a single rock at radius ro:   it feels only interior mass:   M = 4/3 ro

3
o

To follow the rock's motion, define radial coordinate   r = a(t) ro   (track using a scale factor)
Set the whole sphere expanding, with dr/dt = ro da/dt   for our rock.

What is the equation of motion for the rock?
Its total energy (per unit mass) is the sum of its kinetic and potential energies:

#(dr/dt)2   -   GM/r   =   TE   (TE is also called the binding energy).

This is just the equation for throwing a stone vertically upwards:
if TE > 0, then v > vesc and the rock escapes; if TE < 0, then v < vesc and the rock returns.

Rewriting this equation using the changing scale factor and density, we get: 

(da/dt)2   -   (8 G/3)  a2   =   2 TE / ro
2

 "KE"             "PE"                 "TE"

which is the Friedmann energy equation with 2 TE / ro
2 standing in for curvature:   -k c2/Ro

2 
   positive TE    open  geometry 
   negative TE  closed geometry

(b) Cosmological Parameters
Before we solve for a(t), let's draw together some useful cosmological parameter relations:

(i) Hubble Parameter:   H

Scale factor:   a   =   (1 + z)-1     (a = 1 now)

Hubble Parameter:   H   =   (1/a) (da/dt)     (varies with time)
Hubble Constant:     Ho   =   (da/dt)o     =   72 " 10-6 Myr-1   (today's value, psm units)

Velocity factor:   v/vo   =   H r / Ho ro   =   a " H/Ho 
This gives the expansion velocity history for a given object, scaled to 1 today.

(ii) Density Parameters:   , 

Critical density:   c   =   3H2 / 8 G     (varies with time)
Today's value:     c,o  =   3Ho

2 / 8 G   =   1.37 " 10-7 M  pc-3

Density parameters:      =    / c   =   (8 G/3H2)    (vary with time) 
Example of today's value:   m,o   =   m,o / c,o   =   (8 G/3Ho

2) m,o

Summing gives the total density:   t   =   m   +   r   +   v 
Alternatively:   t   =   m   +   r   +   v     (all these vary with time)

Including their dependence on scale factor [sec 4e] and inserting today's (known!) values gives:

  t(a) / c,o   =   m,o a-3   +   r,o a-4   +   v,o  

This is an exceedingly important relation:
it gives the full density evolution as a function of a or z using today's measured values.
[warning:  t(a) / c,o   is not the evolving density parameter,   t(a)     t(a) / c ,   see sec 6cvii]

(iii) Curvature Parameters:   Ro & k

What about an expression for the curvature radius, Ro?
Start with the Friedmann equation and divide by a2:

(1/a2)(da/dt)2   =   H2   =   (8 G/3)    -   kc2/a2Ro
2
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substitute for    =   3H2
t / 8 G   to get     H2   =   H2 t   -   kc2 / a2Ro

2   which yields:

Ro  =  (c/Ho) / [ k ( t,o - 1) ] #     [notice k ( t,o - 1) is always positive]

This is as expected:   Ro         for t,o      1
Current estimates put t,o -1 < 0.02, so   Ro   >   7 c/Ho = 30 Gpc.
At earlier times, R = a Ro is smaller.

It is also useful to express the curvature term as an effective density:

k      -kc2/R2H2   =   -kc2/a2Ro
2H2     and     k,o      -k c2/Ro

2Ho
2

Inserting into the Friedmann equation we find: H2   =   H2
t   +   H2

k      1   =   t   +   k
Notice, k and k have opposite sign: +ve k means open geometry

We can also re-express Ro in terms of k,o and the Hubble distance rH,o = c / Ho :

  Ro = rH,o / | k,o | #  

(iv) Deceleration Parameter:   q
What about a parameter for acceleration/deceleration?
A dimensionless parameter is:   q   =   -a (d2a/dt2) / (da/dt)2   =   - (d2a/dt2) / (aH2)

To find an expression for this, start with the acceleration equation & divide by a:

1/a (d2a/dt2)   =   -H2 q   =   -(4 G/3) (  + 3p/c2)   =   -(4 G/3)  (1 + 3w)

so:
q   =   (4 G/3H2) (3H2/8 G)  (1 + 3w)   =   #  (1 + 3w)

In practice, we should sum over the various components, each with their own w:

q   =   # [ m  +  2 r  -  2 m ]   =   # m  +  r  -  v     at any time, or

  qo   =   # m,o  +  r,o  -  v,o     today.  

Notice that q is defined to be +ve for deceleration
In our pre- v cosmology days (1970s-90s), this was always +ve, with qo = # o   ( r,o is negligible)
But with a vacuum term, q can be either -ve or +ve depending on m and v
Currently, with m = 0.26 and v = 0.73, we have qo = -0.6 :   we are accelerating.

(v) Cosmological Constant:   
What about the cosmological parameter:   
Recent fasion (& these notes) treat this term by simply adding a vacum component
Historically, however, it first appeared as a possible term in Gµ  :

Gµ    =   Rµ    -   #R gµ    +    gµ

This propagates into the Friedmann & Acceleration equations:

(da/dt)2   =   (8 G/3) a2   -   k c2/Ro
2   +   1/3  a2

d2a/dt2   =   -(4 G/3) a (    +   3p/c2)     +   1/3  a

Since the new term appears with the same power of a, we can simply incorporate it in  and p:
this is done by defining  in terms of v, and discovering that w = -1:

     =   8 G v   =   3 H2 v     (units of time-2)   and   v   =   -pv/c2     (i.e.   w = -1)  



(c) The Many FRW World Models
Let's now use the Friedmann equation to study the time development of the scale factor:   a(t).

   basically, derive those expansion/contraction graphs we've seen since high school.

The form of a(t) depends on two things:

the curvature:   closed, critical, open,   which depends on t
the form of the density relation, (a), which depends on the fluid.

A specific solution is called an FRW world model (FRW = Friedmann, Robertson, Walker)

Let's begin with the general case, then look at some special cases.

(i) The General Case

Since the LHS of the Friedmann equation is a constant, it is equal to its value today (a = 1):

(da/dt)2   -   (8 G/3) a2 t  =  (da/dt)o
2   -   (8 G/3) t,o

substitute for   8 G/3  =  Ho
2/ c,o  and  (da/dt)o  =  Ho :

(da/dt)2   =   (Ho
2/ c,o) a2 t   +   Ho

2   -   (Ho
2/ c,o) t,o

   =   Ho
2 a2   [ m,o a-3   +   r,o a-4   +   v,o   +   (1  -  t,o) a-2 ]

   =   Ho
2 a2   [ m,o a-3 +  r,o a-4 +  v,o +  k,o a-2 ]

   =   Ho
2 a2   E2(a)       giving:

  (da/dt)  =  Ho a E(a)       for the evolution of the scale factor  

where we use Peeble's notation for E(a) [or E(z)], and the curvature "density"  k,o  :

  E(a)      [ m,o a-3 +  r,o a-4 +  v,o +  k,o a-2 ] 1/2  

  E(z)      [ m,o (1+z)3 +  r,o (1+z)4 +  v,o +  k,o (1+z)2 ] 1/2  

   k,o      1 - t,o   =   1 -  m,o -  r,o -  v,o

These are exceedingly important functions, and are central to all cosmological calculations.
Notice that they involve current (hence observable) values of , and so can be evaluated directly.

We are now ready to evaluate a(t), the time evolution of the scale factor, by simple integration:

da/dt   =   Ho a E(a)   giving    da / a E(a)   =   Ho  dt   =   t / tH,o     (da from 0 to a; dt from 0 to t)

In general, this and related integrals need to be done numerically.

Alternatively, one can solve the ODE with boundary conditions: (a = 1 ; da/dt = Ho) at t = tnow.
Note: for numerical work, it is sensible to express time in units of tH,o  =  1/Ho

Notice we have three related variables here: cosmic time, t; scale factor, a; and redshift, z.
you can move between them with the following important relations between their differentials:

  dt   =   tH,o da / aE(a)   =   -tH,o dz / (1+z)E(z)     and     da = -dz/(1+z)2 = -a2dz  

where tH,o = 1 / Ho is the Hubble time; one can also use the Hubble radius   c dt = rH,o da / aE(a)   etc.
For example, the relation for current cosmic age is simply:

 dt   (0 to now)   =   -tH,o  dz / (1+z)E(z)   (  to 0)   =   tH,o  da / aE(a)   (0 to 1)

Let's now look at the time evolution of some specific FRW world models.



(ii) The Concordance Model
The real Universe has several components; with current densities:

  v,o = 0.73;   m,o = 0.27;   r,o = 8.4 " 10-5;   t,o = 1.00     ( k,o = 1 - t,o = 0) 

Integrating the general relation gives a current age 0.988 tH,o and a(t) curve shown here: [image]

In practice, each term is dominant over a certain range in a, giving three eras :
during the radiation era:         E(a)    r,o

#   a-2

during the matter era:             E(a)    m,o
#   a-3/2

during the dark energy era:    E(a)    v,o
#

Taken individually, these yield reasonable approximations for a(t) over most of cosmic history.
This [ image ] shows the approximations and their errors, while the table gives the functional forms.
[The Toolbox includes a more extensive set, including Hubble radius, particle and event horizons.]

Approximations to the Concordance model

  Radiation era:       E(a)    r,o
#   a-2

  t   =   tH,o  da / a E(a)   (0 to a)      # tH,o r,o
-# a2      741 a2 h72

-1 Gyr   =   2.34 x 1019 a2 h72
-1 sec

  a      1.16 x 10-6 h72
# tyr

#      2.09 x 10-10 h72
# ts#

  Matter era:       E(a)    m,o
#   a-3/2

  t   =   tH,o  da / a E(a)   (0 to a)      2/3 tH,o m,o
-# a3/2      17.4 a3/2 h72

-1 Gyr

  a      1.49 x 10-7 h72
2/3 tyr

2/3

  Dark Energy Era:       E(a)    v,o
#

  t - tnow   =   t   =   tH,o  da / a E(a)   (1 to a)      tH,o v,o
-# ln(a)      15.9 ln(a) h72

-1 Gyr

  a      exp[ tGyr h72 / 15.9 ]       (tnow = 0.988 tH,o)

Two details: 
      Formally, the exponential term has infinite past, so it is sensible to integrate from a=1, the current time.
      The matter solution is improved slightly by adding 39,000 years to correct the integral over the radiation era.

(iii) Velocity History and Newtonian Energy Diagrams
There is a remarkably transparent way to present the solutions to the Friemdann equations.
It mirrors the Newtonian analysis, using (dimensionless) kinetic, gravitational, and total energies.

Follow the above analysis, starting from the first line:

(da/dt)2   -   (8 G/3) a2 t  =  (da/dt)o
2   -   (8 G/3) t,o

(da/dt)2   -   (Ho
2/ c,o) a2 t  =  Ho

2   -   (Ho
2/ c,o) t,o

Introduce the velocity factor,  v/vo  =  Hr / Horo  =  a H/Ho  =  (da/dt) / Ho 
and express the time-varying density t in terms of today's Omegas, we get:

  (v/vo)2   +   [ - m,o/a   - r,o/a2   - v,oa2 ]   =   1  -  t,o 
  "KE"                       "PE"                             "TE" (const)  

Or using the previous notation:   v/vo  =  a E(a). 
Of course, to convert v(a) to a(t) we still need to integrate, just as before:

v/vo  =  (da/dt) / Ho  =  a E(a)     giving: 
 da /  aE(a)   (0 to a)  =  Ho  dt   (0 to t)  =  t / tH,o
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Notice how our equation follows the Newtonian form, with kinetic, gravitational, and total energy terms. 
Plotting the three terms immediately gives us a feel for the behavior of the expansion: [image] 

  the dropping velocity matches the rising gravitational energy during the radiation/matter eras
  the increasing velocity matches the dropping vacuum gravitational energy during the dark energy era.

Let's try to understand the gravitational terms, since they are the key to the behavior.
Returning to our upward moving rock at the surface of the expanding sphere, what is it's gravitational energy?
There are three contributions: from the matter, radiation and vacuum within the sphere.

The sphere's mass in matter is constant, so the rock's PE increases as -GMm,o/r  giving  - m,o / a. 
The sphere's mass in radiation decreases, so the rock's PE increases faster, as -GMr,o/r2  giving  - r,o / a2. 
The sphere's mass in vacuum increases, so the rock's PE actually falls, as -GMv,o/r " r3  giving  - v,o a2. 

Since the total energy term (1 - t,o) is fixed, the expansion velocity must mirror the gravitational terms.

We can understand dark energy's accelerating expansion by considering its gravitational energy. [image] 
Because larger spheres of vacuum have more mass, their gravitational energy is more negative 
Hence, expansion is "downhill"      vacuum Universe's fall outwards.

One often hears that dark energy "makes gravity repulsive", which refers to the force of gravity.
But force is really just the spatial gradient of energy: i.e. the gradient of the curve in the figure
This curve (- v,o a2) slopes downwards to the right, hence the force is outwards
Notice, gravity is still "attractive", meaning its interaction still causes negative binding energy.

The time of coasting is at the top of the total binding energy curve, with gradient (force) zero.
  Matter force: d/da (- m,o / a) = m,o / a2 (backwards, inverse square, as expected)
  Vacuum force: d/da (- v,o a2) = -2 v,o a   (outwards, increasing with a).

Notice, kg for kg vacuum generates twice the force of matter, so coasting occurs before density equality.
We have: m,o / ac

2 - 2 v,o ac = 0      ac = ( m,o / 2 v,o)1/3 = 0.57 (z = 0.75, t = 7 Gyr).

One may wonder how a vacuum sphere can simply gain mass -- where does that mass come from? 
Amazingly, the gravitational energy released as the sphere falls outwards makes new vacuum!.
[Strictly, this only happens for spheres larger than the Hubble radius. image ] 
This is remarkable: gravity makes the very space into which the Universe is expanding!

(iv) Flat Models: Single Component
The special case of flat geometries with a single component are good pedagogical models.
They also illustrate the behavior of the various "eras" in the multi-component models.

We use   t   =   tH,o  da / aE(a)   (from 0 to a); with E(a) containing just one term:

  1.   Pure matter: m,o = 1;    a E(a) = [a-1]#    t = (2/3) tH,o a3/2   a = [3/2 t/tH,o]2/3

  2.   Pure radiation: r,o = 1;   a E(a) = [a-2]#   t = (1/2) tH,o a2   a = [2 t/tH,o]1/2

  3.   Pure vacuum: v,o = 1;   a E(a) = [a2]#   t - to = tH,o loge a   a = e[(t - to)/tH,o]

  4.   Pure curvature: k,o = 1;    a E(a) = [ k,o]#   t = tH,o a   a = t / tH,o

These recover the forms from [sec 4e]:   a      t2/3 , t1/2 , et   for matter, radiation, vacuum.
The pure curvature model is open (not flat), with simple linear expansion at all times.
Pure matter & curvature models are also called: Einstein-de Sitter & Milne   [sec 6cvii]
Note: the coefficients are different from the concordance approximations because the current 's aren't unity.

For a general equation of state parameter w, we have [sec 4e]:

a E(a) = [a-(1+3w)]#      t = 2/(3+3w) tH,o a(3+3w)/2      a   =   [ (3 + 3w)/2 (t / tH,o) ]2/(3+3w)

you can quickly check this gives 1 & 2 above, for w = 0 and 1/3.
Note also that the flat model with w = -1/3 behaves like an open pure curvature (Milne) model.

It is easy to find the current age of all these models: just set a = 1 and solve for t:
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  tage   =   2/(3 + 3w) tH      2/3 tH ,   1/2 tH ,    ,   tH     for 1 - 4 above.  

Here I chose to use tH in place of tH,o since the relation for tage is true at all times.
As we suspected from the outset, tage   tH to within factors ~unity. 
The exception is pure vacuum, with exponential expansion and infinite age (t  -   as  a  0)
In general, deceleration gives t < tH while acceleration gives t > tH   [image]

Note that w = -1/3 separates ac-/de-celerating models, and hence tage greater/less than tH,o
For example, for flat matter (Einstein-de Sitter; w = 0) we have   tage = 2/3 tH,o,   a famous result.
By including a component with w < -1/3 (eg vacuum/lambda), then tage can get longer than tH,o
This was a key motivation for including  to solve tH,o < t    (1930s), or tH,o < tGC (1990s).

Some more a(t) curves for various models are given here [images]

(v) Flat Models: Matter + Vacuum
As it happens, it is possible to derive an analytic form for a flat universe with both m and v
Apart from a brief (~50 kyr) radiation period, this is basically the Universe we live in [image]

As an exercise in integration, follow the analysis through to derive the following result:

a(t)   =   ( m,o / v,o)1/3   sinh2/3 [ (3/2) v,o
1/2 (t / tH,o) ]   =   0.712 " sinh2/3 (1.28 " t / tH,o)

tage   =   (2/3) tH,o v,o
-1/2 sinh-1 [ ( v,o / m,o)1/2 ]   =   0.78 " 1.27 tH   =   0.993 tH,o

which recovers an age conveniently close to tH,o      Ho
-1

i.e. the decelerating & accelerating portions "average out" to approximate a constant expansion.
(the numbers here use:  v,o = 1 - m,o = 0.73)

(vi) Curved Models: Matter Only
For a long time (1960s-90s), curved matter models were favoured, justifying their inclusion here:

  open with infinite future; closed ending in a big crunch; or "critical", balanced between the two

There is, however, a more compelling reason: they are crucial in theories of galaxy formation
   while the real Universe seems to be globally flat, this is not true locally: 
   voids form from open regions; while stars/galaxies/clusters form from closed regions

FRW curved matter models apply since local evolution is independent of the surroundings.

For a single component:   s   =  s,o a-3(1+w)  and  a E(a)  =  [ s,o a-(1+3w)  +  (1 - s,o)]1/2 
For w = 0 (matter) we have   t(a)   =   tH,o  [ m,o a-1 + 1 - m,o ] -1/2 da   (from 0 to a)

This has a parametric solution which uses a "development angle", 
The form of the solution depends on whether m,o > 1 (closed) or m,o < 1 (open):

For closed models with  = 0 to 2 , the Universe expands, halts, and recollapses in a cycloid:

  a( )   =   # amax (1 - cos )  

  t( )   =   # tH amax (  - sin ) / ( m,o - 1)1/2  

which turns at a( ) = amax = m,o / ( m,o - 1)   and collapses at t(2 ) =  tH,o amax / ( m,o - 1)1/2 
for example, if m,o = 1.5, we have amax = 3 and tcrunch = 6.7 tH,o

For open models, the Universe expands forever with similar solution, with  = 0 to 

  a( )   =   # apar ( cosh  - 1)  

  t( )   =   # tH,o apar ( sinh  - ) / (1 - m,o)1/2  
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where apar   =   m,o / (1 - m,o)   plays the role of amax

Newtonian Energy curves and the Expansion Histories for these matter models are shown here: [images]

(vii) Specific & Named World Models
This [figure] illustrates most classes of FRW world models.

The two key parameters are
curvature: closed (k = +1, k -ve), flat (k = 0, k = 0), open (k = -1, k +ve)
lambda: v: -ve (odd),   0 (simplest),   +ve (what seems to be true).

Full histories in linear time usually consider pressure-less matter along with vacuum.
This is because radiation quickly becomes irrelevant when r < m at t ~ 50 kyr.

Referring to the figures, the overall forms are: 
negative :   unusual; simply adds to matter; all models recollapse 
zero :   most discussed until recently; all decelerate; future depends only on curvature.

closed recollapses; flat halts at ; open expands forever.   [images]
positive :   early, matter dominates    decelerates;   late, vacuum dominates    accelerates.

For a closed geometry, additional possibilities include (see below):

For v < v,E   both collapse and "bounce" solutions exist
For v  v,E   vacuum repulsion and closed geometry nearly balance  long ~static periods.

Ages and futures for all these models can be nicely seen in these plots   [image]

Some of these models go by the names of those who advocated/studied them:

Einstein-de Sitter:  pure matter, flat; "Critical" classical model, between open & closed.

de Sitter:  pure vacuum, flat   exponential expansion: a  et; infinite past; H(a) = const   [image] 
This model has renewed importance, since it is believed to occur during inflation.
It also describes the Steady State model, which needs H(a) = const.

Einstein:   His original model; curvature/matter/vacuum all balance to give static Universe.
pre-dated Hubble's discovery of expansion; doesn't fit above analysis since Ho = 0. 
Instead, set da/dt = d2a/dt2 = 0 to find balance when:  m+ v -1 = 3/2 ( v m

2)1/3

The model is unstable to small deviations from balance.

Eddington-Lemaitre:   Two additional solutions to Einstein's model
Infinitely long static history before starting expansion
big bang in remote past, then expansion comes to gradual halt at infinite future.

Lemaitre:   close to Einstein model, with v ( m) slightly below (above) the critical values. 
Big bang      expansion    "loitering"      exponential expansion.
The motivation for loitering was the too short (incorrect) Hubble time, tH,o = Ho

-1

The age can be increased by introducing  ;   see this example:   [image]   [image]
Lemaitre preciently also wanted a big bang to make elements

Milne:  pure curvature (empty, not even vacuum energy); k = +1, open, (k = -1).
Similar to m/r/v << 1      no de- ac-celeration: linear expansion a = t / tH; tage = tH
Milne's (incorrect) motivation: moving galaxies subject only to special relativity.

Some photos of many of the characters we've mentioned so far are shown here: [image]

        

(7) Distances & Horizons
Discussing distances on an expanding, possibly curved, coordinate grid can be tricky.
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So, first let's distinguish between three different kinds of distance measurement

proper distances:   r   are "true" distances - the number of non-expanding rulers between objects
r increases due to expansion according to the velocity-distance relation v = dr/dt = H r
the current proper distance, r(to), to an object is also called its comoving distance, ro.
the proper distances all change with the scale factor: r = a(t) r(to) = a(t) ro

pseudo (my term) distances:   D   are derived from certain measurements....
eg luminosity (DL) or angular diameter (DA),  as if space-time were static and Euclidean.
they are not "real" distances so much as convenient functions of distance
they are closely tied to observations and play a crucial role in establishing the world model

redshift:   z   though not an explicit distance, it is our primary observable
it is derived from spectra and gives the scale factor when the light set out: a(te) = (1 + z)-1

Given a world model, it is relatively easy to derive all the other distances using z.

This section deals mainly with proper distances:   r
The following two sections consider , among other things, the pseudo distances:   D.

Before we start, let's recall two useful/sensible units of time and distance for cosmology:

  Hubble time:           tH,o   =   Ho
-1   =   10.0 h-1 Gyr   =   13.9 h72

-1 Gyr  

  Hubble distance:   rH,o   =   c / Ho   =   c tH,o   =   13.9 h72
-1 G lyr   =   4.26 h72

-1 Gpc  

they are units comparable to the current age and visible size of the Universe.

(a) Three Proper Distances
Because the Universe is expanding, the proper distance to an object depends on time:   r(t) 
In fact, there are three distances one might consider: [image] 

The proper distance to the object when the light set out:   r(te)   (e = emit)
if the light has travelled for a long time, r(te) could be quite small, but certainly less than:

The proper distance to the object when the light arrives:   r(to)   (o = observed = now)
recall, r(to) = ro, is also called the comoving distance
Since te < to then r(te)  <  r(to);  or using the scale factor:  r(te)  =  a(te) " r(to)  =  a(te) " ro

The distance light travelled during its journey:  rlbt  =  c(to - te)   (lbt: look-back-time)
expansion guarantees that rlbt is intermediate in length between r(te)  and  r(to)
the light travel time, (to - te), is also the look-back time, as invoked in "popular" statements:
"That galaxy is 5 billion light years away, hence we see it as it was 5 billion years ago"

What is r(to) as a function of z?   Here are two approaches:
Imagine a photon at time t on its way to us.
In interval dt it crosses c dt which then expands to become c dt / a(t) at time to = tnow
We can also use the various forms for dt given in [sec 6ci] to give several equivalent integrals:

  r(to)   =   c  dt / a(t)   (te to to)   =   rH,o  da / a2 E(a)  (a to 1)   =   rH,o  -dz / E(z)   (z to 0)

Alternatively, from the RW metric: photons move on radial null geodesics, so d  = ds = 0, giving:

c2 dt2   =   a2(t) dro
2      c  dt / a(t)  =   dr   =   r(to)   (te to to and 0 to ro)   as before.

What about the lookback time?   Again, using the alternatives [sec 6ci] for dt:

  LBT = (to - te)  =   dt  (te to to)  =  tH,o  da / a E(a)  (a to 1);  =  tH,o  -dz / (1+z) E(z)  (z to 0)
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Which are all straightforward to evaluate (numerically).

Examples of r(to),  r(te) and  rlbt = c(to - te) are shown here: [images]
A different presentation, using "The Astronomer's Universe", is shown here [image]

(i) Two Examples: z = 6 & 1000
Let's do a couple of examples using the Einstein-de Sitter Universe ( m,o = 1,  v,o =  k,o = 0)
In this case, E(a) = a-3/2  and  E(z) = (1 + z)3/2

For a z = 6 QSO:   what are   r(to),   r(te),   &   c (to - te)
There are several ways to treat this; let's use the z relations:

r(to)  =  rH,o  -(1 + z)-3/2 dz  (z to 0)  =  2 rH,o [1 - 7-1/2]  =  1.24 rH,o

r(te)  =  r(to) / (1 + z)  =  1.24 rH,o / 7  =  0.18 rH,o

(to - te)  =  tH,o  -(1 + z)-5/2 dz  (z to 0)  =  2/3 tH,o [1 - 7-3/2]  =  0.63 tH,o

The QSO was 0.18 rH,o when the light set out; it is now 1.24 rH,o; the light travelled for 0.63 tH,o.

Pushing further: consider the CMB at z = 1000, we have

r(to)   =   2 rH,o [1 - 1000-1/2]   =   1.94 rH,o

r(te)   =   1.94 rH,o / 1001  =  0.0019 rH,o   or only ~ 8 Mpc!

We are seeing the CMB when it was closer than the Virgo cluster!
That is the main reason physical scales appear so large on the CMB   [sec 8b].

(b) Horizons
Current estimates suggest tot = 1.0      we are in a spatially infinite Universe.
Can we see all of this universe?   No!,   for three (somewhat overlapping) reasons:

Right now, galaxies beyond rH,o = c/Ho = 4.26 Gpc are receding faster than light
As a result, light is actually getting further from us, not closer!

The universe is only ~ 14 Gyr old: light cannot travel infinitely far in that time

Our view of the universe is inevitably restricted to events on our past light cone
this is a 3-d slice within a 4-d spacetime; like a sheet in space
There is much in the Universe not on that sheet!

On earth, our view is limited by the horizon
Hence, some of these cosmic limitations are referred to as horizons

(i) The Hubble Sphere: rH   (where expansion velocity = c)
Consider point 1: the velocity distance relation, v = Hr, defines a critical radius rH = c/H = c tH
Beyond this distance, objects recede faster than light and wavefronts actually get further from us
If the expansion remained constant, then ultimately we can/cannot see objects inside/outside rH.

Of course, the rate of expansion changes and so, therefore, does the size of the Hubble sphere.
For any time:   c = H(a) rH(a) = Ho E(a) rH(a)   giving: 

  rH(a)  =  rH,o / E(a)  =  rH,o / E(z)  

or, re-expressing rH(a) in its larger current comoving size, ro,H(a), we have:

  ro,H(a)  =  rH(a) / a  =  rH,o / a E(a)  =  rH,o (1 + z) / E(z)  
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In physical coordinates, rH increases from zero at t = a = 0 (z = ) and continues to increase.
In comoving coordinates, ro,H grows/shrinks in de/ac-celerating universes.

For the concordance model, ignoring the early period of inflation, we find for comoving ro,H:
the Hubble sphere initially grew outwards: eg at z = 9 (a = 0.1)   ro,H      0.61 rH,o
ro,H then grew to a maximum size when m = v at a = 0.72, when   ro,H = 1.15 rH,o      4.9 Gpc
Since then, ro,H has been shrinking and is currently at ro,H(a=1) = rH,o = 4.26 h72

-1 Gpc
It is currently shrinking at a rate dro,H/da " da/dt = Ho drH/da = 0.18 Mpc/Myr or about 0.6 c
Objects currently at the Hubble sphere are not, of course, visible to us (nor will they ever be).

(ii) The Particle Horizon: rp-hor   (furthest currently visible)
Consider point 2 above, and ask: what is the furthest object currently visible in the sky?
Its light has travelled non-stop since the big bang, so that te = 0 and LBT = (to - te) = tage
We want the comoving version of this distance, r(to).
From the above [sec 7a] relations, just take limits t (0 to to) or a (0 to 1) or z (  to 0):

  rp-hor(to)  =  c  dt / a(t)   (0 to to)  =  rH,o  da / [a2E(a)]   (0 to 1)  =  rH,o  -dz / E(z)   (  to 0)

For non-zero m or r, the integral is finite, and there is indeed a most distant object visible.
For example, take the Einstein-de Sitter case (flat, matter only):   E(z) = (1 + z)3/2, giving:

rp-hor(to)  =  rH,o  -(1 + z)-3/2 dz   (  to 0)  =  2 rH,o

so, our three proper distances are:   r(te) = 0;   rlbt = c to = 2/3 rH,o;   r(to) = rp-hor(to) = 2 rH,o

Using the concordance values in E(z) gives rp-hor = 2.55 rH,o = 10.9 h72
-1 Gpc   (35.5 Gly)

It seems puzzling that light cannot cross the "entire universe" when it has "no size" at the BB.
But at t = 0, for non-zero m or r, all locations expand with infinite speed [sec 6cii]
Hence, at t = 0 all points are profoundly isolated; even the closest location is outside the horizon.
Only after some deceleration does light make progress and crosses comoving coordinate space.

Only if the initial expansion is zero can light cross everywhere in the first instant.
This occurs in two FRW cases: 

empty open (Milne;   linear expansion) and 
pure vacuum (de Sitter;   exponential expansion)

In these cases, there is a period when the entire universe is causally connected
If the conditions are right, it can establish coherent (global) properties during this time.
As we shall see [sec 11] an early period of inflation may have done just this in our universe.

The particle horizon is important in understanding structure formation.
By defining the region visible at any time, it also defines the region in causal contact
Even when optically opaque, gravity still travels at light speed and sets the sphere of influence.
Thus, the particle horizon defines the largest possible self-interacting region.
Everything on larger, "super-horizon" scales is fundamentally disconnected.

So, how does the particle horizon size grow with time?   Simply change the upper limit to t / a / z:
In comoving coordinates we have for the particle horizon at any time:

  rp-hor(t)  =   c dt / a(t)   (0 to t)   =   rH,o  da / a2E(a)   (0 to a)   =   rH,o  -dz / E(z)   (  to z)  

Giving 2 a1/2 rH,o for Einstein-de Sitter;   a rH,o for flat radiation;    for flat vacuum (de Sitter)

The time defined by rp-hor / c goes by another name, conformal time:

(t)       dt / a(t)   (0 to t)       da / a2E(a)   (0 to a)       -dz / E(z)   (  to z).

This is a useful surrogate for time, in part because it gives the horizon size at a given t, a, z.
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It is the time variable of choice for studying growth of perturbations.
Space-time diagrams (see below) can also look much simpler when plotted using conformal time.

(iii) The Event Horizon: re-hor   (furthest ultimately visible)
If an event happens now in a distant galaxy (eg a supernova), when will we actually see it? 
If the answer is "never", then the galaxy is said to lie beyond our event horizon   [image] 
Like the other horizons, it can change with time (and even be infinite).

In comoving coordinates, for any time, it is given by:

  re-hor(t)  =  c  dt / a(t)   (t to )  =  rH,o  da / a2E(a)   (a to )  =  rH,o  -dz / E(z)   (z to -1) 

Which is the same as rp-hor but with different (complementary) integration ranges
Not surprisingly, if an FRW model has finite rp-hor it often has infinite re-hor, and visa-versa
Einstein-de Sitter & flat radiation have re-hor = ;   while flat vacuum (de Sitter) has rH,o /2a2

Vacuum in the concordance model ensures we will never see remote parts of the Universe.
Indeed, as time passes, we will see less and less as the event horizon shrinks (in comoving radius).

The event horizon is important during vacuum driven inflation [sec 11]:
A small causally connected region expands and is pushed outside the (shrinking) event horizon
After inflation, we have a huge smooth super-horizon region, previously causally conntected
As normal expansion resumes, the horizon moves out and the region re-enters the horizon.

It also plays a crucial role generating and amplifying quantum fluctations.
Ultimately, these fluctations provide the seeds for future galaxy formation [sec 11].

The three horizons (rH   rp-hor   and   re-hor) for the concordance model are shown here [image].

(c) Space-Time Diagrams
In special relativity, space-time diagrams are often useful in clarifying a situation.
They (usually) plot ct vertically and a spatial coordinate horizontally, so light rays move at 45o

Such diagrams are more complex on curved expanding space-times in cosmological GR:

locally, light cones are "tipped" to align with tilted world-lines.
globally, light rays can follow curved paths as they move across expanding coordinate grids.

It is, however, often possible to clean up these diagrams & reestablish 45o light paths:

change the spatial axis to comoving distance,   so objects have vertical world lines.
change the time axis from ct to c (t)   =   conformal time

These [images] show space-time diagrams with light cones for the concordance model. 
There are three of them:

normal distance vs normal time -- light cone appears like an avocado seed
comoving distance vs normal time -- light cone appears like a spikey shield volcano
comoving distance vs conformal time -- light cone appears like a 45 degree cone.

They are quite instructive: take a little time to figure them out.

(d) Energy within the Hubble Sphere
Although we used local energy conservation to legitimately derive  = o a-3(1+w),
discussion of global cosmological energy is much more tricky/impossible, not least because:

the Universe is ~infinite in extent
there is no global inertial frame
expansion kinetic energy is ill-defined for r > rH where v > c
gravitational potential energy is ill-defined with no zero-level at infinity.

Ignoring these concerns (!), we proceed to estimate the total energy within a Hubble sphere: rH = c / H.
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Our aim is merely to suggest that the Universe's total energy might actually be ZERO

Let's push the simple Newtonian analysis [sec 6a v] a little further:
for a critically expanding sphere of radius R, density  = 3 H2 / 8 G and velocity law v = H r   :

PE  =  -(3/5) GM2/R  =  -(3/20) R5 H4 / G

KE  =  #  4 r2dr  (H r)2  =  +(3/20) R5 H4 / G

and we recover the Newtonian result:   Etot  =  PE  +  KE  =  E   =  0   for all R.

Relativistically, however, we mustn't forget the (positive) rest mass energy:   [image]

RE  =  M c2  =  (4/3) R3  c2  =  (1/2) R3 H2 c2 / G  =  (1/2) R3 rH
2 H4 / G

Hence:   |PE| / RE    (R / rH)2   so that on small scales rest mass utterly dominates cosmic energy.

However, when R    rH the -ve gravitational energy grows to match the +ve rest mass energy.
e.g. for R ~ rH,o we have   RE ~ |PE| ~ rH,o

5 Ho
4 / G  =  c5 / Ho G    1076 erg    1022 M    1011 Mgal

This crudely illustrates how on cosmic scales the total energy, including rest mass, could be zero.
In GR the condition of flat geometry is equivalent to our Newtonian "zero energy".

A more professional analysis of inflation does indeed suggest the Universe might have zero net energy.

  Everything  may have arisen from Nothing  

This is surely one of the most astonishing of Nature's possible properties.
  All matter in the Universe is borrowed against the negative gravitational energy of space-time.

Inflation is the mechanism that "splits nothing" into positive energy and equal negative binding energy.
That is how the Universe can be made from nothing!

        

(8) Observables vs Redshift: A Toolkit
Objects in the Universe have intrinsic properties:   luminosity, size, velocity, space density
From far far away, we witness observed properties:   flux, angle, proper motion, etc.
The relationships between these two are straightforward in a static Euclidean space
However, the real Universe has an expanding possibly curved space-time:

   how does this affect the simple Euclidean relationships?

Well, things get a bit more complex.
As usual, we need to keep our eye on two new aspects:

The fact that the geometry might be curved
The fact that during light's journey from object to us, the Universe has expanded.

With these in mind we can derive close analogs to the Euclidean relationships.
Indeed, one usually expresses them in Euclidean form, using a pseudo-distance, D, in place of r.
The most famous of these are luminosity distance, DL, and angular diameter distance, DA
I'll try to keep the convention of labelling pseudo-distances with capital D.

(a) Luminosity Distance
So far, we've only used the radial part of the RW-metric. Now we need to use its angular part.

In a static Euclidean space, brightness f (W m-2) is derived by spreading luminosity L (W) over a spherical shell with radius
equal to the observer-object distance d (m):   f   =   L / 4 d2

Moving to the RW-metric, we need to make four modifications:
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the appropriate distance is r(to) = ro = rH,o  dz / E(z)   (z to 0), the current proper distance
the surface area is reduced (increased) relative to 4 d2 for closed (open) geometries.
the energy of each photon is reduced by a factor (1 + z)
the rate at which photons arrive is also reduced by a factor (1 + z)

Consider points 1 & 2; the RW-metric for intervals on the comoving sphere is (dt = dr = 0; a = 1):

ds2   =   Ro
2 Sk

2(ro/Ro) (d 2 + sin2  d 2)

Integrating over  and  for the total spherical shell area, we get:

A(r)   =   4  Ro
2 Sk

2(ro/Ro)   =   4  D(ro)2     [ where D(ro)      Ro Sk(ro/Ro) ]

D(ro) is a comoving distance measure and is our first pseudo-distance:
think of a " D as giving the correct d  if we placed physical area dA at proper distance a " ro

dA(r,t)   =   [ a(t) " D(ro) ]2 d

it is smaller (larger) than the proper distance, a " ro, for a closed (open) geometry.
for flat (k = 0) geometry, D(ro) = ro and spherical shells have Euclidean area: A = 4 D2    [image]

For flux, we set a = 1 and include the redshift factors (points 3 & 4 above):

  f   =   L / 4  D2 " 1 / (1 + z)2   =   L / 4  DL
2     [ where DL  (1 + z) D ]  

DL is the luminosity distance and is our second pseudo distance
it gives the correct (bolometric) luminosity using the Euclidean formula.

Making the equations more explicit:

  D(ro)   =   Ro Sk(ro/Ro)   effective angular comoving distance

  ro(z) = rH,o  -dz / E(z)     (from z to 0)   true comoving proper distance

  Sk(x) = sin(x)   x   sinh(x)   (k = +1  0 -1)   corrects for curvature

  Ro = rH,o / | k,o | #   the curvature radius [sec 6b iii]

  k,o = 1 - t,o   the curvature parameter

Notice that for k = 0, D = ro and apart from the (1 + z)-2 term, we recover the Euclidean relation. 
Likewise, for ro << Ro and z << 1, we recover the full Euclidean relation.
Here is a figure showing DL(z) for several world models [image]

There is an important detail we've ignored: the above relation works for bolometric fluxes.
In practice observations are usually in a spectral band, which introduces two additional effects:

the bandwidth is stretched (compressed) in wavelength (frequency) by a factor (1 + z)
the rest frame spectral region is bluer than the bandpass, by a facor (1 + z); (K correction)

which lead to the following modifed relations:

f    =   L  / 4  DL
2 " [ L ( (1 + z)-1) / L ( ) ] " (1 + z)-1       (units: erg/s/cm2/A)

f    =   L  / 4  DL
2 " [ L ( (1 + z)) / L ( ) ] " (1 + z)       (units: erg/s/cm2/Hz)

 f    =   (1 + z)-1 L ( (1 + z)-1) / 4  DL
2       (units: erg/s/cm2)

 f    =   (1 + z) L ( (1 + z)) / 4  DL
2       (units: erg/s/cm2)

Usually, continuum fluxes require these relations, while emission lines are bolometric.

(b) Angular Diameter Distance
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In a static Euclidean space, an object at distance d of size ds subtends and angle d  = ds / d
In moving to the RW-metric, we have two modifications

the object was closer when the light set out
curvature affects the linear distance swept out by an angle

All rays we see have been travelling on radial null geodesics (d  = d  = dt = 0)
for a proper transverse length, ds, which subtends angle d , the RW-metric gives:

ds   =   a(te) Ro Sk(ro/Ro) d    =   a(te) D(ro) d    =   D(ro) / (1 + z)   d

note a(te) is included since the light ray geodesics start at emission time, te   [image]

Thus, we have for the angular diameter:

  d  = ds / a(te) D = ds / DA     [ where DA     D / (1 + z)   =   DL / (1 + z)2 ]  

DA is the angular diameter distance and is our third pseudo distance
it gives the correct angular diameter using the Euclidean formula.

DA(z) curves are shown here [image BR 7.4]: they are famous for turning over
   place galaxies further away:   they first look smaller, then stay the same, then look bigger!

the reason they look bigger is not due to curvature, but their proximity when the light set out.

The above analysis applies to an object of specific physical size, ds.
How does this change for a (large) comoving size dS which expands with the universe?
For example, how big would a 100 Mpc SDSS supercluster appear at z = 0.2,  5,  1000?

A comoving (ie current) size dS was smaller at redshift z:   ds = dS/(1 + z).
Using this in the relation d  = ds / DA we get:

  d    =   dS/(1 + z) / [D/(1 + z)]   =   dS/D   =   dS/DEA     [ where DEA    D ]  

DEA = D is the angular diameter distance for an object expanding with the Hubble flow.

Let's do our example of 100 Mpc at z = 0.2,  5,  1000,   choosing Einstein-de Sitter (flat, matter):
for this, we have D = ro = rH,o  dz / (1 + z)3/2 = 2 dH,o [1 - (1 + z)-#]   =   [0.17, 1.18, 1.94] " rH,o
Using rH,o = 4.26 Gpc, we have d  = 7.9o,  1.14o,  0.69o   for z = 0.2,  5,  1000.
These angular sizes don't get bigger at high z, because our object was smaller back then.
Notice that our supercluster is ~8o in the SDSS, it is still ~1o at z = 5 and ~0.7o on the CMB

(c) Proper Motion Distance
Consider an object with transverse velocity,   vt
the object takes time dt' to travel ds = vt dt', but we witness this as time dt = dt'(1 + z).
Combining the angular diameter and time dilation relations, the observed proper motion is:

  d /dt   =   ds/DA / dt' (1 + z)   =   vt / D   =   vt / DM     [ where DM     D ]  

DM = D is the proper motion distance, and is seen to be our original pseudo distance, D
it gives the correct transverse velocity from a proper motion, assuming the Euclidean relation
This is the appropriate distance to use when measuring projected jet speeds in radio galaxies.

(note, David Hogg's classic "cheat sheet" uses DM, DC and DH for my D, ro and rH,o)

(d) Surface Brightness
In a static Euclidean space, surface brightness is famously independent of distance:

SB   =   f / (d )2   =   L/(4 d2) / (s/d)2   =   L / 4 s2     (independent of d)
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Moving to the RW-metric:   f decreases  (1 + z)-2, and (d )2 increases  (1 + z)2

  SB   =   f / (d )2   =   L/(4 DL
2) / (s/DA)2   =   L / 4 s2 (1 + z)-4  

This is the (almost) equally famous (1 + z)-4 rapid drop in surface brightness with redshift.
note it is independent of curvature and, of course, is Euclidean at low-z.

The relations for continuum fluxes are: SB       (1 + z)-3,   and SB       (1 + z)-5

the steep drop in surface brightness with redshift is a mixed blessing:
it severely hinders observation of high redshift galaxies, however
without it we would all be dead.

(1 + z)-4 takes the utterly lethal black body radiation at recombination and renders it harmless.

(e) Cosmic Volumes
As we look out to a given redshift, the volume witnessed increases.
Let's first consider the comoving volume, ie the volume it will expand to today.
How does this depend on redshift?

The proper comoving area at comoving distance ro is A(ro) = d  D2, where D = RoSk(ro/Ro).
The proper comoving volume of a shell of depth dro is dVC = A(ro) dro = d  D2 dro
Now, since ro = rH,o  dz/E(z),   then we have   dro = rH,o dz/E(z)   which gives:

dVC = d  rH,o D2 dz/E(z),   which can be integrated between redshifts:

  VC(z1 to z2)   =   d  rH,o  -D(z)2 dz/E(z)   (from z1 to z2)  

Notice that D(z) is itself an integral, since D = RoSk(ro/Ro) and ro = rH,o  -dz/E(z)   (z to 0)

The total (d  = 4 ) comoving volume out to redshift z turns out to be:

VC(z) = 2  rH,o
3/ k,o [ D/rH,o(1 + k,oD2/rH,o

2)#   -   | k,o |-# ASk( k,o
# D/rH,o) ]

where ASk(x)  =  arcsin(x) & arcsinh(x) for k = +1 & -1, and VC(z)  =  4/3  D3   for k = 0

Let's now consider the actual (not comoving) volume, which is much less as z increases
Repeating the analysis, but keeping non-comoving quantities, we have A(r,a) = d  a2 D2

dro becomes a dro = a rH,o dz/E(z)   giving dV = d  rH,o D2 (1 + z)-3 dz/ E(z)  =  dVC (1 + z)-3

which can also be integrated to yield a significantly smaller volume.

(f) Summary of Relations
Let's gather many of these relations together.
Imagine observing an object at redshift z, with (bolometric) luminosity L, and physical diameter S

First some auxiliary functions & definitions we'll need:

E(z)   =   [ m,o (1 + z)3  +  r,o (1 + z)4  +  v,o  +  k,o (1 + z)2 ] 1/2

k,o   =   1  -  ( m,o  +  r,o  +  v,o)   =   1  -  t,o

D   =   Ro Sk(ro/Ro)       with   Sk(x)  =  sin(x) ;  x ;  sinh(x)   for k = +1 ;  0 ;  -1

Ro   =   rH,o / | k,o |#     with   rH,o  =  c/Ho  =   c tH,o

dro   =   c dt / a   =   rH,o dz / E(z)   =   rH,o da / a2E(a)

Proper distance at time of observing:



r(to)  =  ro  =  c  dt/ a   [te to to]  =  rH,o  -dz/ E(z)   [z to 0]  =  rH,o  da/ a2E(a)   [a to 1]

Proper distance at time of emission:

r(te)   =   a(te) r(to)   =   r(to) / (1 + z)

Look-back time (LBT):

(to - te)   =    dt   [te to to]  =  tH,o  -dz/ (1 + z)E(z)   [z to 0]  =  tH,o  da/ a E(a)   [a to 1]

The physical and comoving Hubble spheres at redshift z:

rH(z)   =   c / H(z)   =   rH,o / E(z)

ro,H(z)   =   c / aH(z)   =   rH,o (1 + z) / E(z)

The comoving particle horizon at time / redshift / scale factor   t / z / a:

rp-hor  =   c  dt/ a   [0 to t]  =  rH,o  -dz/ E(z)   [  to z]  =  rH,o  da/ a2E(a)   [0 to a]

The comoving event horizon at time / redshift / scale factor   t / z / a:

re-hor  =  c  dt/ a   [t to ]  =  rH,o  -dz/ E(z)   [z to -1]  =  rH,o  da/ a2E(a)   [a to ]

Observe a bolometric flux (W m-2):

f   =   L / 4 DL
2       DL  =  D(1 + z)     is the luminosity distance

Observe an angular diameter (radians):

   =   S / DA       DA  =  D/(1 + z)     is the angular diameter distance

c   =   Sc / D     for an object expanding with the universe, with comoving size Sc

Bolometric surface brightness, SB (W m-2 sr-1):

SB   =   L / S2 " (1 + z)-4

For transverse velocity vt (km s-1) we observe a proper motion, PM (radians s-1):

PM   =   vt / DM       DM  =  D   is the proper motion distance.

Comoving proper volume, dVc (m3) in a shell from z to z + dz in solid angle d  :

dVc   =   d  D2 dro   =   d  D2 rH,o dz/ E(z)

dV   = dVc " (1 + z)-3     is the physical (non-comoving) volume in the same shell

(g) Useful Charts
I have made a number of charts and graphs which show concordance model cosmic properties
These should help you to get a feel for the relations given above.
In particular, they all use linear time since this is closest to our experience.
To cover everything, we need three epochs:

Full history :           Parameters   and   Events   and   Graphs 
The first Gyr :         Parameters   and   Events 
The first 500 kyr :   Parameters   and   Events
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(9) Problems With the Standard Model
The Standard Hot Big Bang model described so far seems remarkably cogent.
Recall, its basic assumptions are:

The Cosmological Principle   --   large scale homogeneity & isotropy, yielding the RW metric
General Relativity   --   relates contents to dynamics and geometry
Five components with equations of state   --   radiation; neutrinos; baryonic matter; dark matter; dark energy
An initial perturbation spectrum close to "scale invariant"   --   P(k)  k.
Adiabatic cooling from a hot early phase
The Standard Model of particle physics   --   QED, QCD, etc

This framwork manages to account for an extremely wide range of observations,
It also provides several independent estimates of its basic parameters.
Apart from the unknown nature of dark matter & energy, the framework seems quite robust.

However, there exist a number of problems with this standard picture.
"Problems", here, does not refer to an error or mismatch to data.
Rather, they are deeper concerns about the seemingly unlikely nature of the initial conditions

   why was the expansion launched exactly the way it needed to be to yield our current universe?

This section summarizes these cosmic peculiarities (6 of them)
The section following shows how an early burst of inflation can explain how they all come about.

(a) The Flatness Problem
The Universe is close to a rather special condition, which can be expressed in three equivalent ways:

The universe's geometry is within a few % of flat (zero curvature).
Its density is within a few % of the critical density.
Its expansion speed is within a few % of the (Newtonian) escape speed.

As we'll see, the standard model rapidly evolves away from this special state, not towards it.
Having expanded over many factors of 10, its early state must have been exceedingly close to the special case.
In the absence of an explanation for this fine tuning, we seem to have a "problem".

(i) Newtonian Escape Speed
Return to our Newtonian sphere of rocks expanding close to the escape speed [see sec 6 a iv]. 
Recast this as launching a rock upwards from the Earth's surface [image].

At 1% below the escape speed it just reaches the moon before turning around
If the Earth were 100" smaller, you need to launch at 1/100th % below vesc to just reach the moon.
      this is equivalent to going to earlier times with a = 1/100, or z = 101, or t = 17.4 Myr.
If the Earth were 108" smaller, you need to launch at 10-8 % below vesc to just reach the moon.
      this is 1 cm/s slower than 100,000 km/s, and matches cosmic expansion at t = 40 mins.

Let's redo this example analytically: 
If our rock starts at rin moving at vin and turns around high up at rturn, then we have for vin and vesc:

# vin
2 - GM/rin = E  = -GM/rturn     and     #vesc

2 = GM/rin

Hence, # vin
2 = GM (1/rin - 1/rturn)   giving   (vin/vesc)2 = (1/rin - 1/rturn) / (1/rin)      1 - rin/rturn

So, in order to reach rturn, it must start within v of vesc where:   v / vesc     # rin/rturn 
As rin gets smaller and smaller, the initial velocity must get closer and closer to vesc.

This is the Newtonian analog of the "flatness problem":
   the early Universe is in a very deep and steep gravitational pit.
   in order "get up high" (to become so "BIG"), it must have been launched incredibly close to vesc.

(ii) Curvature/Omega Evolution
This topic is usually cast in terms of curvature, which is of course related to density.
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Measurements suggest the current total density, t,o, is within 5% of unity   (equivalently, k,o < 0.05).
Now, although an exactly flat universe is always flat, what if the current Universe is in fact slightly curved?
Let's derive how the curvature changes as the Universe evolves -- does it get more or less curved?

The current total density parameter is   t,o  =  t,o / c,o  =  8 G t,o / 3Ho
2

and its deviation from 1 specifies the spatial curvature:   t,o - 1  =  - k,o  =  kc2/Ro
2Ho

2     [see sec 6b iii]
At epochs other than the present:   t(a)  =  8 G t / 3H2,   where H and t are now both functions of a.
Let's substitute:   H(a) = HoE(a)   and   t / c,o  =  m,oa-3 + r,oa-4 + v,o  =  E2(a) - k,oa-2

t(a)  =  8 G c,o ( t / c,o) / 3Ho
2E2(a)  =  [ E2(a) - k,oa-2] / E2(a)  =  1  -  k,o / a2E2(a)

which is the relation we need.

More specifically, since   a2E2(a)  =  m,oa-1 + r,oa-2 + v,oa2 + k,o
then for any currently non-flat universe ( k,o  0)   we find going backwards in time (ie   a    0), 
the geometry was more flat:   t    1 ,   k    0 ,   as long as either matter or radiation dominates.

There is a more transparent way to express this, using:   a2E2(a)  =  a2H2(a) / Ho
2  =  [ v(a) / vo]2

This is the (normalized) velocity history discussed in sec 6c iii, with its [image] shown here. 
Summarizing:

  t(a)  =  1  -  k,o / a2E2(a)  =  1  -  k,o / [ v(a) / vo]2  

giving a simple rule [image]. :

Decelerating expansion (matter/radiation) makes the Universe less flat
Accelerating expansion (vacuum) makes the Universe more flat

Hence, for the standard model, the Universe was flatter in the past, and will get flatter in the future

Let's look at the past more quantitatively.   In the radiation era we have [sec 6c ii ] :

      a2E(a)2    r,o / a2    and    t  =  tH,o  da / a E(a)  (0 to a)     # tH,o r,o
-#  a2    2.33 x 1019 h72

-1  a2   sec.

so the curvature becomes:

  k(a)      k,o a2 / r,o      104 a2 k,o      5.0 x 10-16 tsec h72
-1 k,o  

At the time of the CMB (a ~ 10-3)   the curvature k is only ~1% of the current value, k,o ;
at He synthesis (a ~ 10-9)   k    10-14 k,o ;   and at the GUT era (a ~ 10-28)   k    10-52 k,o ! [image]. 
Clearly, the fact that we are within 5% of flat today implies the early universe must have been extremely flat.

Of course, inflation's early acceleration can generate just this kind of extreme flatness.

One final potentially confusing point:   although the Universe was flatter in the past (ie   k  0  &  t  1),
its curvature radius,   R = a Ro ,  was smaller in the past, and indeed R  0 as a  0 !
How do we understand this apparent contradiction?   Easy:  R and k depend differently on a.
Recall [sec 6biii] the definitions of k and k,o which use R and Ro:  

k  =  -kc2 / R2H2  =  -kc2 / [ a2Ro
2 Ho

2E2(a) ]  =  k,o / a2E2(a)

So R2H2 follows a2E2(a), and although R  0 as a  0,  R " H increases and drives k to 0.
Of course, a " H(a)    v(a), the velocity history (our previous result), and we have v   as a  0.

(b) The Horizon Problem
In the standard cosmology, it is puzzling why the Universe is uniform on large scales 
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In other words: Why does it obey the Cosmological Principle?

For example: the CMB is (almost) identical on opposite sides of the sky [image]. 
But the light from each side has only just reached us, in the middle 
Hence the two sides have not yet been in contact -- so why are they the same?

Smoothing requires communication: things must be in contact or have a common origin to be be similar 
You might think: Everything was "together/touching" at the big bang, so what's the problem? 
However, in the standard cosmology, with a  t1/2 we have v  t-1/2 and the initial expansion (a = 0) is infinitely fast.
These [images] show how all points, no matter how close, are causally disconnected at the big bang.

In practice, smoothing can only occur at light speed:    we only expect things to be similar within a horizon
distance. 
At 400 kyr the horizon is roughly 400 kly across, which is ~1 degree on the CMB [image] 

   we only expect uniformity within 1 degree regions, which is clearly not the case at all.

The fundamental origin of the horizon problem is that the standard cosmology begins with infinite expansion and
decelerates.
Inflation solves the problem by introducing accelerating expansion [image].

(c) The Monopole Problem

(d) The Structure Problem
The standard hot big bang theory has no account for the origin of structures.
They are part of the initial conditions

Two possible sources of fluctuations:
    statistical fluctuations of particle numbers
    quantum fluctuations in all things.

However, in a decelerating expansion, it transpires that such fluctuations decrease with expansion.
Basically, if the Universe is born smooth, it stays smooth, even given it's particulate/quantum nature.

Again, we need an accelerating expansion to amplify these seed fluctuations.

(e) The Existance Problem
Look around you -- the objects, the trees, the earth, moon, sun and stars.
Where did all that matter come from?
As physicists, we are triply perplexed:
      (a) more than most people, we appreciate just how MUCH matter exists in the universe;
      (b) we know that matter is concentrated energy: multiply by c2 and its a HUGE amount of energy;
      (c) we have deep respect for conservation of energy -- again:   where did it all come from?

From sec 7d, we get half the answer... appearances are misleading:
   integrated over a Hubble sphere, the positive mass-energy is balanced by an equal negative gravitational energy

The total energy is ZERO!   In a sense, the Universe "SUMS TO NOTHING!".
Your matter (and everything around you) is "on loan", borrowed against a huge intergalactic gravitational debt.

Our puzzle doesn't vanish, however -- it changes to something a little more tractable:
   what mechanism can start with nothing, and create arbitrary amounts of matter and gravity?

You guessed it...   inflation can.....

(f) The Expansion Problem
Why is the universe expanding? 
GR tells us that any form of matter/radiation should tend to collapse
The standard hot big bang simply takes this expansion as an initial condition.
Notice that the flatness problem not only demands an initially expanding state, but the launching speed must have been both
infinitely fast, and infinitely finely tuned to the (infinite) escape speed.
Thus, there is a double puzzle.
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Solution: relax the condition that radiation (or matter) dominated the early universe
Instead, suggest that vacuum energy dominated
This ensures (a) the natural evolution is one of expansion
and (b) since it is accelerating expansion, it's launching speed will be exactly the escape speed.

        

(10) Inflation & Its Solutions
As promised, we now turn to examine inflation and its implications for solving the above problems.
"Inflation" here refers to any framework that includes an early period of accelerated expansion.
It does not replace or contradict the standard hot big bang model, who's virtues all remain.
Rather, inflation is inserted at the beginning and provides a way to launch the standard model.

As you are probably aware, it adds the following new features:

it ensures that the observable universe was once well inside a horizon,
this allows time to establish homogeneity and isotropy, which we now observe on large scales.
it launched the expansion at exactly the "escape velocity", allowing the universe to become large.
-- equivalently, it drove the geometry exceedingly close to flat (Euclidian)
-- equivalently, it drove the total density exceedingly close to the critical density.
it amplified quantum fluctuations into classical perturbations, allowing subsequent structure formation.
after inflation, "reheating" provides an exceedingly hot relativistically dominated early phase
it dilutes to ~zero any relic particles left over from the earliest times (eg magnetic monopoles).
it miraculously converts nothing into arbitrarily large amounts of something
actually, exactly equal amounts of positive (mass) energy and negative gravitational field energy.

This field is very sophisticated, and most is beyond our (read my) expertise.
So, we'll approach this at a suitably unsophisticated level.
We'll start with the implications of acceleration, and then look at what might be driving the acceleration.

(a) Virtues of Accelerated Expansion

(i) Preliminaries
Fortunately, we have already encountered accelerated expansion in the context of dark energy [see Topics 4di, 4f, 4h]
We simply need a dominant component with equation of state parameter: w < -1/3   ie p < - c2/3.
This follows directly from the Friedmann acceleration equation:   d2a/dt2  =  -(4 G/3) a (   +  3p/c2) 
for w < -1/3,  d2a/dt2 is positive, gravity is repulsive, and expansion accelerates
(review [sec 4h] for an intuitive description of why this happens.)

For a flat geometry we have [sec 6c iii]    = o a-3(1+w)   and the Friedmann energy equation gives:

da/dt  =  (8 G /3)# a  =  (8 G o/3)# a-(1 + 3w)/2  =  Ho a-(1 + 3w)/2

which has solutions:

w > -1:     a(t)  =  [(3 + 3w)/2 . t/tH]2/(3+3w)     power law expansion; index > 1 (acceleration) for -1 < w < -1/3.
w = -1:     a(t)  =  a(to) e(t - to)/tH     pure exponential expansion, with e-folding time tH = H-1.
w < -1:     a(t)  =  [1  +  (3 + 3w)/2 . (t - tnow)/tH]2/(3+3w)     big rip (a  ) at   t = tnow + 2tH / |3+3w|.

The last two solutions have no clear big bang,   ie  a  0 only as t  -

Inflation is often assumed to be a vacuum energy, with w  -1, giving approximately exponential growth.
In this case, the number of expansion e-foldings, N, is given by (recall eN = 10N/2.3)

N  =  ln (aend / astart)  =  (tend - tstart) / tH     where
tH  =  (3 / 8 G )#  =  1.34 6

-#   sec     (with 6 in units of 106 gm cm-3)

(ii) Expansion Factor Required
(iii) Convergence to Flatness
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(iv) Shrinking Event Horizon
(v) Dilution of Relics

(b) Dynamics of Scalar Fields

(c) Creating Perturbations

(d) Observational Tests of Inflation

        

(11) The First Three Minutes
Some useful figures: [images]

On the limits of extragalactic astronomy, so this will be brief

        

(12) Recombination & the CMB
Some useful figures: [images]

Some useful figures: [images]
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