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Growth of Structure 

Notes based on Teaching Company lectures, and associated 
undergraduate text – with some additional material added.  

For a more detailed discussion, see the article by Peacock 
taken from a 2002 winter school, which is a briefer version 
of his textbook:  
http://ned.ipac.caltech.edu/level5/Sept03/Peacock/Peacock_contents.html 

Preliminaries 
Inflation, we think, created very slight variations in density from 
place to place, which we describe using: δ(r) = δρ/<ρ>(r). 

During expansion, although <ρ> decreases, δρ/<ρ> can increase.  

When δρ/<ρ> reaches ~1 (i.e. ρ ~ 2<ρ>), a region breaks away 
from Hubble expansion, slows, turns around, and collapses – this 
is now “object formation” (stars, galaxies, clusters).   

We describe δ(r) = δρ/<ρ>(r) using its Power spectrum, P(k): 

Questions: 
What was inflation’s P(k), and what is P(k) for today’s Universe? 
Can we understand how P(k) evolves from one to the other? 

!(r) = !k  eik . r!   and   P(k) = !k
2

  where  k = k = 2" / #
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Even though ρ is dropping due to expansion, δρ/ρ can increase. 
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Example 1-D power spectrum, P(k), and its density field, δρ/ρ. 
In this, and all other cosmological examples, the phases are random  
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Today’s measured power spectrum, P(k) Simple 1-D example of today’s P(k) 
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Largest features (super-clusters/voids) have scale corresponding to 
peak of P(k). Larger scales are progressively smoother. 
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Super/Sub-Horizon Growth 
P(k) for the density field contains both short and long λ modes. 
 
In linear growth (when δρ/ρ << 1), the growth of each λ mode is 
independent of all the other modes. 
 
However, the growth of a mode depends on whether the mode’s 
λ is smaller or larger than the horizon at that time. 

Let’s look at super-horizon growth, and sub-horizon growth. 
 
Initially, we are only interested in the dark matter component. 
     This ultimately dominates the matter components 
     It is pressureless, so only responds to gravity. 
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Example of two component density pattern. 
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During radiation era: δρ/ρ     t, so from inflation (10-36 s) to 1000 
yrs δρ/ρ grows by factor ~1046 (on all scales). Incredible growth!  

!

Sub-Horizon Growth 

Average 

A 

B 

C 

Horizon Size 

Higher density 
Lower density 

Local forces at work – gravity pulls material into denser regions 
away from less dense regions – density contrast grows. 

Perturbation growth in an expanding medium 

Richard Bentley 
1662 - 1742 

Isaac Newton 
1643 - 1727 

This process has a long history – the Newton-Bentley dialogue: 
Newton realized infinite universe unstable to local collapse.  
For static system, collapse proceeds exponentially: δρ/ρ ~ et . 
However, expansion reduces the density, slowing the growth rate: 

Static collapse time:  tc ~ (Gρm)-1/2,  
               Cosmic expansion timescale: 1/H ~ (Gρc)-1/2  

! !
During the matter era: 
 ρm ≈ ρc and δρ/ρ       a       t2/3 
 
During the radiation era: 
 ρm << ρc so δρ/ρ ~ frozen 
In fact, super-horizon growth slowly 
redshifted away, so δρ/ρ      ln a. 
This is the Mésáros effect. 

!
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Density Contrast Growth Rates. 
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Because sub-horizon scales have suppressed growth, the overall 
nature of the density pattern changes over time. 

Evolution of P(k) 
Quantum fluctuations during (exponential) inflation provide an 
“Initial Power Spectrum” (IPS):  
 
                                      P(k)  = A k n    with n = 1 
 
This is also called the Harrison-Zel’dovich spectrum, and/or the 
scale-invariant spectrum. 
 
This latter term is used because: Δk

2(Φ) = k3P(k) = constant. This 
means that the rms variation in gravitational potential, Φ, within 
regions of size r ~ 1/k, is independent of r.   I.e the gravitational 
“wrinkliness” of the (initial) universe looks the same on all scales. 
 
Let’s see how an IPS of P(k)      k   evolves over time. !

Gravitational roughness is similar on all scales  
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Expansion of different sized waves 
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Change in gradient by 4:  n = 1 to -3 
It is relatively easy to see why there is a change by 4 in the gradient 
of log P(k) vs log k due to suppressed growth in the radiation era: 

In practice, (i) the peak is so broad that it takes a few dex in k to 
reach the k -3 part, and (ii) non-linear effects make the high-k side 
less steep anyway.  

Consider two waves, 1 dex apart in k. Since wavelengths grow ~ t1/2 
in the radiation era and the horizon grows ~ t, then there is a two-dex 
delay in time between the horizon entry of the two waves. Since δρ/ρ 
grows ~ t in the radiation era, then there is a two-dex difference in 
growth of δρ/ρ, which corresponds to a four-dex difference in P(k) 
(since P(k) ~ (δρ/ρ)2). Hence, the high-k (small-λ) wave now has P(k) 
four-dex lower due to its extra suppression in the radiation era. 
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Review using 1-D examples: 
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Today’s Power Spectrum 
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Comparing P(k) for CDM & Baryons 
The Baryons are tied to the photons via Thomson opacity, so they 
experience pressure.   
 
On scales less than the Jean’s length, pressure dominates and the 
photon-baryon gas oscillates as sound waves. 
 
Since λJ ≈ cs(π/Gρ)1/2 and cs ≈ c/√3,  then λJ ≈ c/√(Gρ) ≈ c/H. 
So essentially all scales within the horizon are dominated by 
pressure and undergo oscillatory (acoustic) motion, with no steady 
growth in δρ/ρ. 

At the time of the CMB, therefore, δρ/ρ is much less in the baryons 
than in the dark matter.  
 
Only when the radiation decouples and the pressure drops do the 
baryons fall into the DM pockets and inherit its density pattern. 
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Atomic Matter 

Variations in density at time of CMB 
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After CMB: atomic matter falls into the DM potentials – takes on its 
3-D density pattern. 
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Rapid growth of baryon P(k) 

1 
3 
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CDM & baryon evolution to z ~ 30 Turnaround and Collapse 

Previous discussion was for linear growth regime, so up to δρ/ρ ~ 1. 
 
After that, a region deviates significantly from the Hubble flow, and 
ultimately halts expansion, turns around and collapses. 
 
Here are some figures illustrating the situation. 
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Dark matter’s inefficient collapse 
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Collapse of dark matter region: “violent relaxation” 

big crunch initial collapse first rebound final state 

Once collapse starts in the early Universe, it is a 
rapid process – early structure formation is fast. 
 
The reason is simple: tcoll ~ 1/√Gρ, and since ρ is 
high at early times, collapse times are high 
(roughly, tage). 

Hierarchy of Collapse 

The first objects form where the density is highest. 
 
Where are these peaks in the density field? 
They occur where short wave peaks align with medium wave peaks 
which in turn align with long wave peaks (see figures). 
 
Because of this, the first stars are born in groups, which then fall 
together in star-clusters, which fall together into infant galaxies, and 
so on, in a hierarchy.  
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Notice that the earlier objects forming are also the densest.  



9 

Location of first stars  
(detailed simulation) 

150,000 light years 
First stars form in densest dark matter regions 

Notice, objects forming at 
high-z are highly clustered 
because they form within 
larger over-dense regions. 

Strongly Clustered 

More quantitative approach 
If we want to ask when a region of size ~r will collapse, we simply 
ask whether δρ/ρ > 1 when averaged over the region. 
 
If the answer is “yes” then it will soon collapse and virialize 
(possibly including many smaller previously virialized objects).  
 
It is important to realize that the relative number of regions of size r 
that are about to collapse depends strongly on r.  In general, at any 
given time, fewer regions of larger r will be collapsing. 
 
We can get some sense of this by asking what is the variance (i.e. σ2) 
of δρ/ρ for an ensemble of spheres of radius r. 
 
When σ2 ~ 1, then a significant fraction are ready to collapse. 
 
This is illustrated in the next figure. 

Density spread depends on region size 
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More quantitative approach 
Placing spheres of radius r at random and evaluating δρ/ρ within the 
sphere is the same as convolving the density field by a spherical “top 
hat”. The variance of this smoothed distribution is what we’re after.  
 
Recall: convolving in real space can be done in Fourier space: 

! 2 (r) = 1
(2" )3 P(k) W 2 (kr) 4"k2! dk

Where W(kr) is the Fourier transform of the spherical top hat: 

W (kr) = 3
(kr)3

sin(kr)! krcos(kr)[ ]
Since this is a relatively peaked function at kr ~ 1, then it turns out:   

! 2 (r) ! "2 (k) # 1
2" 2 k

3P(k)   where   k ! 2
r

Dimensionless power spectra: Δ2(k) and σ2(r) 

Note: Δ2(k) ~ k3 P(k) is 
a dimensionless 
version of the power 
spectrum, and is often 
used instead of P(k). 
 
When Δ2(k) reaches 1 
then regions of size r ~ 
1/k will soon collapse. 

Region size collapse sequence 
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Region size: r  (Mly) 
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Growth of roughness (expansion not shown!) 

Formation of filaments 

Following symmetric peak collapse, next is asymmetric ridge collapse. 

Fly-thru millennium simulation 

End of Growth of Structure 


