The Fraction of X-ray Active Galactic Nucleus within Galaxy Groups in the COSMOS Field

1、数据下载:

1)下载Brusa+2010,ApJ,716:248 “The XMM-Newton Wide-field Survey in the Cosmos Field (XMM-COSMOS): Demography and Multiwavelength Properties of Obscured and Unobscured Luminous Active Galactic Nuclei” http://adsabs.harvard.edu/abs/2010ApJ...716..348B Table 2 ==> http://iopscience.iop.org/0004-637X/716/1/348/suppdata/apj341700t2_mrt.txt ==> AGN716_1_348.tbl

2)下载George+2011,ApJ,742:125 “Galaxies in X-Ray Groups. I. Robust Membership Assignment and the Impact of Group Environments on Quenching” http://adsabs.harvard.edu/abs/2011ApJ...742..125G 电子版 Electronic Refereed Journal Article (HTML) 6. Member Catalog ==>http://irsa.ipac.caltech.edu/Missions/cosmos.html ==> COSMOS Catalog Listing ==> Groups下载其中的 README_galaxies.txtxg_galaxies.tbl

作为比较,另附:

(1)Cappelluti+2009 “The XMM-Newton wide-field survey in the COSMOS field——The point-like X-ray source catalogue”  1,887个 point-like X-ray source ==> download······

(2)Allevato+2012 “Occupation of X-Ray-selected Galaxy Groups by X-Ray Active Galactic Nuclei” Table 2 “58 AGNs in Galaxy Groups”==> download······

2、(1)将AGN716_1_348.tbl分成两个文件:前72行文字说明==>xAGN.head73~最后一行数据==>xAGN.tbl1,797行 ,ref. Brusa+2010 sec. 2.1. X-ray ……includes 1848 point-like sources……

(方法:vi AGN716_1_348.tbl => :1,72w xAGN.head:73,$w xAGN.tbl

2)将xg_galaxies.tbl分成两个文件:前24行文字说明==>xg_gal.head25~最后一行数据==>xg_gal.tbl 115,844

(方法:vi xg_galaxies.tbll => :1,24w xg_gal.head:25,$w xg_gal.tbl

3、(1)在 xAGN.tbl表中挑选流量限制样本(第8Source in flux limited sample?”-CFlag=1+可靠的光学对应体(第11Optical identification flag”-IFlag=1+分类为AGN(第23Source class”-Class=12)的样本==> xAGN_BNL_lim.tbl730行)

(方法:awk '$8==1 && $11==1 && $23<2.5 && $23 >0' xAGN.tbl > xAGN_BNL_lim.tbl

在红移0<z<1.0范围内,这730AGN中有光学光谱证认的AGN338个(338/730 ~ 46.3%

(方法:awk '$22>0 && $22 <1.0'  xAGN_BNL_lim.tbl | wc

运行frac_BNL_AGN.f 直接用awk命令(awk '$23==1' xAGN_BNL_lim.tbl | wc)统计宽线AGNClass=1)和窄线AGNClass=2)比例==>BL AGN403,~55%); NL AGN327,~45%

2)在xg_gal.tbl中挑选P_MEM_ZBEST > 0的星系==> xg_gal_p0.tbl 7,984行)

(方法:awk '$16>0.0' xg_gal.tbl > xg_gal_p0.tbl

若选P_MEM > 0的星系==> xg_gal_p0.tbl 8,644行)

(方法:awk '$11>0.0' xg_gal.tbl > xg_gal_p0.tbl

4、运行cross_id.f xAGN_BNL_lim.tbl xg_gal_p0.tbl根据radec信息进行交叉证认==> cross_agn_gal.tbl43行)

说明:cross_agn_gal.tbl43行) 表中选取的是id_group_zbestP_mem_zbestR_ratio_zbest

如果用P_MEM > 0选出来的8,644个星系表xg_gal_p0.tblxAGN_BNL_lim.tbl交叉证认得到的cross_agn_gal.tbl44行)

说明:cross_agn_gal.tbl44行) 表中选取的是id_groupP_memR_ratio,并在S_Class后面增加一列mmggs(群内最大质量星系),类似于星系团里的cD星系,BCG星系),mmggs=1yesmmggs=0no

5、 根据Pmem_zbest>0.1|zAGN-zgroup|/(1+zgroup)>0.01这两个条件,运行sel_zbest_agn.f,在cross_agn_gal.tbl 中筛选出符合条件的数据==>sel_agn_gal.tbl27行,其中id_group=124的有2行,筛除掉16行)

根据Pmem>0.1|zAGN-zgroup|/(1+zgroup)>0.01这两个条件,运行sel_z_agn.f,在cross_agn_gal.tbl 中筛选出符合条件的数据==>sel_agn_gal.tbl28行,其中id_group=124的有2行,筛除掉16行)

6、截取sel_agn_gal.tbl 中第3id_group ==> sel_id_group.txt,并按从小到大进行排序 ==> id_group.txt,目的是制作下面的awk批处理文件

(方法:awk '{print $3}' sel_agn_gal.tbl > sel_id_group.txt

(方法:sort -n -k1,1 sel_id_group.txt > id_group.txt

(方法:如制作 Pmem>0.1的计数可执行文件count_mem_0.1,根据第17GROUP_ID_ZBEST和第16P_MEM_ZBEST进行选取

awk '{if($17==17 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($17==19 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($17==29 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($17==35 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($17==39 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($17==65 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($17==87 && $16>0.1) print $0}' xg_gal_p0.tbl | wc

……

同理制作:

Pmem>0.3的计数可执行文件count_mem_0.3

Pmem>0.5的计数可执行文件count_mem_0.5

Pmem>0.7的计数可执行文件count_mem_0.7

第二次截取sel_agn_gal.tbl中第3id_group ==> sel_id_group.txt,并按从小到大进行排序 ==> id_group.txt,目的是制作下面的awk批处理文件

(方法:awk '{print $3}' sel_agn_gal.tbl > sel_id_group.txt

(方法:sort -n -k1,1 sel_id_group.txt > id_group.txt

(方法:如制作 Pmem>0.1的计数可执行文件count_mem_0.1,根据第12GROUP_ID和第11P_MEM进行选取

awk '{if($12==17 && $11>0.1) print $0}' xg_gal_p0.tbl | wc

awk '{if($12==19 && $11>0.1) print $0}' xg_gal_p0.tbl | wc

……

同理制作:

Pmem>0.3的计数可执行文件count_mem_0.3

Pmem>0.5的计数可执行文件count_mem_0.5

Pmem>0.7的计数可执行文件count_mem_0.7

7、首先sort -n -k3,3 sel_agn_gal.tbl > pmem_agn_gal.tbl制作一个按第3id_group 排序的文件pmem_agn_gal.tbl

然后,分别执行count_mem_0.1count_mem_0.3count_mem_0.5count_mem_0.7,将wc输出的第1列行数(星系个数)依次贴在 pmem_agn_gal.tbl右边

第二次同样先 sort -n -k3,3 sel_agn_gal.tbl > pmem_agn_gal.tbl制作一个按第3id_group 排序的文件pmem_agn_gal.tbl

然后,分别执行count_mem_0.1count_mem_0.3count_mem_0.5count_mem_0.7,将wc输出的第1列行数(星系个数)依次贴在 pmem_agn_gal.tbl右边

8、运行agn_ratio.f计算Pmem>0.1Pmem>0.3Pmem>0.5Pmem>0.7 每一个groupfAGNn_AGN/n_gal)及其误差,并将结果继续贴在pmem_agn_gal.tbl右侧 ==> final_agn_gal.tbl

9、筛选AGNgalaxyPmem数据:

awk '{print $12}' final_agn_gal.tbl > agn_pmem.tbl

(这个final_agn_gal.tbl中第12列是Pmem_zbest数据,第二次工作是根据Pmem进行选取的,所以数值不同,所画柱状图也不同)

awk '{print $16}' xg_gal_p0.tbl > gal_pmem.tbl

(这个xg_gal_p0.tbl 中第16列是Pmem_zbest数据,第二次工作是根据Pmem进行选取xg_gal_p0.tbl中第11Pmem数据,所以数值不同,所画柱状图也不同)

运行plot_AGN_gal_Pmem.f,分别画出AGNgalaxyPmem分布柱状图==>plot_AGN_gal_Pmem.eps fig1.eps

10、筛选final_agn_gal.tbl 中第10AGN光谱红移数据:

awk '{print $10}' final_agn_gal.tbl > agn_zspec.tbl 28行)

根据第16P_MEM_ZBEST范围筛选xg_gal_p0.tbl galaxy测光红移数据,分成Pmem>0.1Pmem>0.3Pmem>0.5Pmem>0.7

awk '{if($7>0 && $7<1.0 && $16>0.1)' xg_gal_p0.tbl > gal_zpho_0.1.tbl6136行)

awk '{if($7>0 && $7<1.0 && $16>0.3)' xg_gal_p0.tbl > gal_zpho_0.3.tbl5255行)

awk '{if($7>0 && $7<1.0 && $16>0.5)xg_gal_p0.tbl > gal_zpho_0.5.tbl4324行)

awk '{if($7>0 && $7<1.0 && $16>0.7)' xg_gal_p0.tbl > gal_zpho_0.7.tbl 2909行)

运行plot_num_AGN_gal_z.f画出AGNgalaxy4种样本随z的分布 ==> plot_num_AGN_gal_z.eps

若根据第11P_MEM范围筛选xg_gal_p0.tbl galaxy测光红移数据,则

awk '{if($7>0 && $7<1.0 && $11>0.1) print $7}' xg_gal_p0.tbl > gal_zpho_0.1.tbl6597行)

awk '{if($7>0 && $7<1.0 && $11>0.3) print $7}' xg_gal_p0.tbl > gal_zpho_0.3.tbl5617行)

awk '{if($7>0 && $7<1.0 && $11>0.5) print $7}' xg_gal_p0.tbl > gal_zpho_0.5.tbl4606行)

awk '{if($7>0 && $7<1.0 && $11>0.7) print $7}' xg_gal_p0.tbl > gal_zpho_0.7.tbl 3028行)

运行plot_num_AGN_gal_z.f画出AGNgalaxy4种样本随z的分布 ==> plot_num_AGN_gal_z.eps fig2.eps

11、运行plot_R200_zspec.f ==> plot_R200_zspec.epsfig3.eps),分析AGNR/R200随光谱红移的演化关系,其中R表示AGN距星系群中最亮星系的距离

12、运行plot_fAGN_group_zbin.f画出各groupAGN 占该group所有星系的比例fAGN随红移z的变化==>plot_fAGN_group_zbin.eps fig4.eps

13、运行gal_count_zbin.f逐次统计Pmem>0.1Pmem>0.3Pmem>0.5 z=11010个测光红移bin区间星系个数,贴在一起==>gal_count_zbin.tbl

运行agn_ratio_bin.f计算各红移区间、各Pmem阈值的AGN比例及误差==>agn_ratio_bin.tbl

运行plot_fAGN_zbin.f画出三种样本各红移区间包含AGN的星系个数占该红移区间所有星系的fAGN随红移zbin的变化(由于有的zbin可能没有包含AGN的星系,所以每个sample中都出现了两个fAGN的点)==>plot_fAGN_zbin.eps fig5.eps

14

1)统计各红移间隔(01.0Δz=0.1group星系个数(此处xg_gal_p0.tblPmem>07,984个星系):

awk '$7>0.0…0.9 && $7<0.1…1.0' xg_gal_p0.tbl | wc

分别得到:23284512281903782521836898753578个 (共8576个)

2)统计各红移间隔(01.0Δz=0.1field星系个数(此处xg_gal.tbl为原下载之115,825个星系):

awk '$7>=0.0 …0.9 && $7<0.1…1.0 && $11==0 && $12==-1' xg_gal.tbl | wc

分别得到:1514314949759235757410311151499751023910139个 (共74350个)

3)统计各红移间隔(01.0Δz=0.1AGN个数(即有z_spec确认的)

awk '$22>= 0.0 …0.9 && $22<0.1…1.0' xAGN_BNL_lim.tbl | wc

分别得到:3121241212750506260 (共338个)

4)统计各红移间隔(01.0Δz=0.1groupAGN个数(在交叉证认过的文件cross_agn_gal.tbl中)

awk '$10>= 0.0 …0.9 && $10<0.1…1.0' final_agn_gal.tbl | wc

分别得到:0517135442 (共32个)

15、运行plot_fAGN_field_zbin.f画出场星系fAGN随红移z的变化==>plot_fAGN_field_zbin.eps fig6-1.eps









School of Physics and Technology, NJNU