16 教授的最后一篇演讲
女士们、先生们:
1962年,默里·盖尔曼和尤瓦尔·尼曼分别独立地认识到,
可以根据SU(3)群把各种粒子归纳成一些家族图形。
他们发现,并不是所有家族图形都是完整的,其中有一些空
隙。从这方面说,这种情况同门捷列夫早先在编制其原子元素周
期表时所面临的局面非常相似。门捷列夫也发现元素的表现可以
排成一些周期循环的图形,如果他给当时还没有发现的元素留下
一些空位,通过考察这些空位旁边的元素的性质,他便能够预测
那些未知元素的存在和它们的本质。现在,历史再次重演了:盖
尔曼和尼曼也根据三角形十重态中的一个空位,预测出Ω-粒子
的存在和它的具体性质。由于1963年引人注目地发现了Ω-粒子,
科学界便完全相信SU(3)对称群是站得住脚的。
门捷列夫周期表通过揭露元素之间的关系,暗示了它们的内
部结构:应该把各种元素看做是用同一个题材写成的不同类型的
作品。这种看法后来在原子结构理论中得到了证实,根据这个理
论,一切原子都是由一个原子核及其周围的电子组成的。
1964年,盖尔曼和兹威格指出,粒子所表现出的相似性和家
族图形同样是某种内部结构的反映。这个建议坚持认为,当时被
当作“基本粒子”的200多种粒子,事实上很可能是由更为基
本的组成部分构成的合成物。这些组成部分被叫做夸克。目前,
大家都相信夸克是真正的基本粒子。它们被看做是不具有由“亚
夸克”组分组成的内部结构的点状物。但是,谁知道是不是这样
呢?我们也可能又一次被证明是错误的!
最初的方案是根据当时已知的三种类型或者说有三种味的夸
克制订的。这三种夸克是上夸克、下夸克和奇夸克。前两种夸克
之所以这样命名,是因为它们的同位旋采取朝上和朝下的方向。
奇夸克的名称则出于它带有新发现的一种物理性质——奇异性。
20世纪70年代,人们辨认出带有另外两种性质(粲性和底性)的
粒子,到了90年代,又辨认出另一种性质(顶性)。于是,后来
的方案就必须把带有新发现的性质(另外三种味)的夸克包括进
去。所有这6种夸克的性质都在表1中列出。
除了这6种夸克以外,还有6种反夸克,它们的各个量子数
全都与表1所示的值相反。例如,奇夸克s的反夸克s-的Q=
+1/3,B=-1/3,S=+1。
表1 夸克的各种性质
————————————————————————————
Q B S c b t
————————————————————————————
d -1/3 1/3 0 0 0 0
u 2/3 1/3 0 0 0 0
s -1/3 1/3 -1 0 0 0
c 2/3 1/3 0 1 0 0
b -1/3 1/3 0 0 -1 0
t 2/3 1/3 0 0 0 1
————————————————————————————
表是Q是电荷,B是重子数,S是奇异数,c是粲数,b是
底数,t是顶数。竖行中的d,u,s,c,b,t分别代表下、
上、奇、粲、底、顶等6种夸克。
这些夸克和反夸克可以合成高能碰撞中产生的所有新粒子。
重子是由3个夸克(q,q,q)构成的。因此,举例来说,质
子是(u,u,d)的组合,中子是(u,d,d),而Λ0是
(u,d,s)。你们可以从表1中查出,上面这些组合确实产
生了各种粒子所具有的性质(例如,质子的B=+1,Q=+1)。
反重子是由3个反夸克(q-,q-,q-)组成的,这就
使得重子和反重子具有截然相反的性质。
那么,像π介子这类介子呢?介子是由一个夸克和一个反夸
克(q,q-)组合构成的。例如,π+介子是(u,d)的组
合。你们可以再一次从表1中查出,这种组合正好给出π+介子
的全部性质:B=0,Q=+1。
我必须指出,并非所有粒子都是由夸克构成的。只有重子和
介子才有这样的结构。事实上,我们把所有这类粒子统称为强子。
强子能感受强核力的作用;而另一些类型的粒子,像电子、μ子
和中微子等,就不是这样了,它们统称为轻子。其实,“重子”
和“轻子”这两个名称可能并不太准确,它们是根据粒子质量的
轻重定下来的。但是,我们目前已经知道,有一种轻子——τ粒
子——比质子还要重一倍,根本就不是什么“轻”粒子!因此,
最好是根据粒子到底是强子(会进行强相互作用的)还是轻子(
不感受强核力作用的),来对它们进行描述。
到目前为止,我们只谈到被束缚在强子里的夸克。那么,自
由夸克是什么样的呢?它们应该是很容易根据它们的分数电荷(
Q=1/3或Q=2/3)而被辨认出来的吧!
尽管人们尽了最大的努力,却从来没有人见到过自由夸克。
即使是在最高能的碰撞中,也从未发射出夸克来。这就要求物理
学家对它作出合理的解释了。
有一种流行过一时的想法认为,夸克并不是真实的东西,而
只不过是数学上的玩意儿——一种有用的虚构物。是粒子的表现
使人觉得它们似乎是由夸克构成的,但并没有现实的夸克这种东
西。
但是,后来人们却无可争议地证明了夸克的真实性,这是历
史重演的又一个例子。请大家回想一下,1911年卢瑟福爵士是怎
样通过把子弹(α粒子)射入原子并观察到某些大角度反弹,从
而证明原子核的存在的吧。这是因为大角度的反弹表明,入射粒
子在原子中撞上了一个很小的密实的靶(原子核)。1968年,人
们开始有可能把高能电子射入质子的内部,并开始积累了电子偶
尔发生大角度侧向反弹的证据,这表明电子撞上了质子内部某种
很小的密实的带电物体,从而证实夸克的确是存在的。不仅如此,
从这种大角度散射的频率出发,就可以计算出在质子内部有3个
夸克。
好了,既然确实有夸克存在,那么,为什么它们从来不单独
出现呢?此外,我们还必须再提一个问题:为什么我们只能得到
(q,q-)和(q,q,q)的组合,而得不到像(q,q-,
q)和(q,q,q,q)那样的组合呢?为了解释这个问题,
我们得转而谈谈夸克之间的作用力的本质。
首先我们要回顾一下,氢原子的质子和电子之间的吸引力是
怎样由质子和电子所带电荷之间的静电作用力引起的。这样,通
过类比,我们要引人另外一种“荷”。我们假定夸克就带有这种
“荷”(此外还带有电荷),而强力就是由于这种“荷”之间发
生相互作用而引起的。我们把这种“荷”叫做色荷,为什么这样
叫,以后大家就会明白。
就像正负电荷会互相吸引一样,正负色荷也会互相吸引,不
过其作用力要强得多。我们假定夸克带有正色荷,而反夸克带有
负色荷,这就解释了为什么容易出现介子的(q,q-)组合的
原因。我们再一次通过同静电场的类比,假定同性的色荷互相排
斥,这就说明了不存在(q,q-,q)组合的原因。正如靠近
氢原子的第二个电子不会附在氢原子上,是因为它对质子的吸引
力被它对已经处在原子中的那个电子的排斥力抵消掉了一样,第
二个夸克也不会附在介子上,因为它受到介子中已有的另一个夸
克的排斥。
不过,你们大概想问:那么,你怎么解释(q,q,q)的
组合呢?这里我们必须注意到电荷和色荷之间的差异。电荷只有
一种,它可以是正的,也可以是负的;而色荷却有三种,其中每
一种都可以是正的,也可以是负的。我们管它们叫做红、绿、蓝
(即r,g,b),其原因马上就要讲清楚(不过,现在我得立
刻强调指出,它们同日常生活中的颜色并没有什么关系)。既然
色荷有三种,便出现了一个问题:在带有不同种色荷的夸克之间
(例如带红色的qr和带蓝色的qb之间)会发生哪种相互作用
呢?答案是:它们会互相吸引。由于(qr,qg,qb)组合
中的三个夸克各自带有不同的颜色,而每一个夸克都受到其他两
个夸克的吸引,所以这时的吸引力非常强大,能使(qr,qg,
qb)结合得特别牢固,特别稳定,因而就产生了重子。
为什么不会出现(q,q,q,q)的组合呢?因为色荷只
有三种,所以第四个夸克所带的色荷必定与已经存在于重子里的
三个夸克当中的某个夸克相同,这样一来,它就会受到带有同一
种色荷的夸克的排斥。结果,这个斥力正好同另外两个带有不同
色荷的夸克对第四个夸克所施加的吸引力抵消掉了,因此,第四
个夸克就不能加入重子的组合。
说到这里,大家可能开始明白为什么要用“色荷”这个名称
了。正如原子整个说来一般是电中性的那样,我们说,容许的夸
克组合也应该是色中性的,或者说应该是“白色”的。把颜色混
合成白色的方法有两种:或者是把一种颜色同它的补色(或负色)
结合在一起;或者是把三个原色结合在一起。而这两种方法正好
是把几种色荷结合成完全色中性的组合(介子和重子)的法则。
现在,我们来作个小结:夸克带有色荷r,g或b的正值,
而反夸克则带有这些色荷的负值(即互补值)r-,g-,或b-。
同性的色荷互相排斥,例如,r排斥r,g-排斥g-。而异性
的色荷互相吸引,所以r吸引r-,等等。最后,不同种类的色
荷也互相吸引。
我们还得再提出一个问题:为什么不存在独立的夸克呢?为
了回答这个问题,我们必须更深入地了解色力的本质,事实上也
是了解各种作用力的本质。
量子物理学认为,粒子间的相互作用并不是连续而是分立的,
按照这种精神,我们认为一种作用力——任何一种作用力——从
一个粒子传递给另一个粒子的机制,牵涉到第三个中介粒子的交
换。从根本上说,我们可以认为粒子1朝着粒子2的方向射出那
个中介粒子,在这个过程中,粒子1会发生一次反冲,就像枪支
在射出子弹时会朝着与子弹运动相反的方向反冲那样。粒子2在
接受中介粒子时,也吸收了它的动量,从而向后退离粒子1。这
种交换的整个效果是迫使两个粒子分开。当那个中介粒子从粒子
2回到粒子1时,上述过程又重复了一次,也再一次迫使两个粒
子分开。其净效应是两个粒子互相排斥,也就是说,它们都受到
一个斥力。
那么,引力是怎么回事呢?实际上是同样的机制在起作用,
不过,如果大家坚持要进行类比的话,这一次我们必须认为粒子
并不是射出子弹,而是扔出一个飞去来器。粒子1朝着背离粒子
2的方向射出中介粒子,从而经受到一次朝着粒子2的反冲;而
粒子2这时则从相反的方向接受到中介粒子,所以也被推向它的
同伴。
在两个电荷之间产生电作用力的场合下,中介粒子是光子、
由于一再交换光子,两个电荷或是互相排斥,或是互相吸引。
事情既然如此,我们就不禁要问:夸克之间的强相互作用力
是不是也可以用交换某种中介粒子来解释呢?答案是肯定的,夸
克也是通过交换一种叫做胶子的中介粒子而在强子中束缚在一起
(我想,我毋须再说明胶子这个名称的来源了吧)。胶子有8种
不同的类型。其所以如此,是因为在交换胶子的过程中,夸克要
保持它们的分数电荷和分数重子数,还要能够交换它们的色荷。
胶子在被第一个夸克射出时,带走了这个夸克原来的色荷,但是,
夸克是不能够没有颜色的,因此,在它失去原来的颜色的同时,
它就要带上第二个夸克的颜色。而那个胶子在到达第二个夸克时,
会把这个夸克原来的色荷抵消掉,同时把从第一个夸克带来的色
荷转交给它。这样,交换胶子的净效果是两个夸克交换了色荷。
要使这种转换能够发生,胶子就必须既带有某种色荷,又带
有与之互补的色荷。举例说,胶子Grb将带有色荷r和b,它
可以参加下面的转换过程:
Ur→Ub+Grb 接着是 Grb+Db→dr
这里有三种色荷和三种互补色荷,因此,色荷和互补色荷之间便
可以有3×3=9种不同的可能组合,这些组合分成一个八重态
和一个单态(大家应该还记得,前面在把介子归入SU(3)表
象时,我们已经介绍过八重态和单态。胶子的单态对应于rr-,
bb-和gg-等组合,由于它是色中性的,它不会同夸克发生
相互作用,因此我们便不再考虑它。这样便只剩下八重态,也就
是说,总共有8种胶子。
像光子一样,胶子是没有质量的;但是,和光子不同,光子
本身并不带有电荷,而胶子——正如我们刚刚指出的——却带有
色荷。因此,胶子不但能同夸克发生相互作用,而且在胶子自身
之间也是如此。这就引人注目地改变了它们所传递的作用力的特
性。电作用力会随着电荷问距离的增大而减弱(即反比于电荷间
距离的平方而减弱),而色力却始终具有相同的值,与距离无关
(除非色荷彼此靠得非常近,这时色力会变得几乎不再存在——
就像一条橡皮筋的两端靠在一起时它会变得疲软没劲那样)。因
此)当两个夸克靠在一起时,它们之间只有非常小的作用力,但
是,当距离增大时,这个力就会达到一个固定不变的值。
现在请大家记住这一点,跟着我回到为什么没有发现单独的
夸克这个问题上来。假定我们试图把两个夸克分开。由于它们之
间存在着固定的作用力,为了使它们的距离增大,就必须使用越
来越多的能量。最后,你会达到这样一个时刻,就是你为了拉断
那条把两个夸克连在一起的纽带所使用的能量,已经大到足以产
生一个夸克一反夸克对。这时所发生的事情是:那条纽带突然断
开了,并且产生了一对夸克和反夸克。在新产生的这对夸克和反
夸克中,那个反夸克立即与被拉出的夸克凑在一起,并组成一个
介子,而那个夸克却留在强子里取代了旧夸克的地位。这种情况
与你拿着一根磁铁试图把它的南、北极分开时所出现的局面非常
相似。在把磁铁分成两半时,新的南、北极产生了,留下的是两
根磁铁,你完全没有达到取得单独的磁极这个目标。同样,断开
夸克之间的纽带也不会产生单独的夸克。
我们曾经说过,质子和中子都是色中性的,并且在它们之间
存在着一种吸引力。正是这种力对抗着原子核中带正电的质子之
间的静电斥力,使原子核粘得很牢而不致散开。为了理解核子之
间怎么会出现这种强相互作用力,让我们回忆一下原子是怎样组
成复杂的分子的——尽管各个原子本身都是电中性的。这种作用
于各个原子之间的所谓范德瓦耳斯力之所以能够产生,是由于其
中每一个原子里的电子都发生重新排列,从而使它们受到属于其
他原子的原子核的局部吸引,这样就产生了一种能把各个原子结
合在一起的外部剩余力。与此相似,一个核子里的夸克也能够用
这种方式进行自我调整,从而产生了一种能够吸引邻近核子的组
成部分的外力——尽管每一个核子都不具有净色荷。因此我们知
道,作用于核子之间的强力也可以看作是组成它们的夸克之间的
更为基本的胶子力的“泄漏”。
这样一来,强作用力(或者说胶子力)便在自然界各种不同
的作用力之间占有一席之地。说到万有引力、电力和磁力,它们
都是长程力,因而能产生很容易观察到的宏观效果,这里只要提
出行星的轨道和无线电波的发射这两个例子就够了。但是,强作
用力却是短程力,它的作用距离只有10-15米, 也就是同原子核
的尺寸一般长。正是强力的这种短程性质,使得它要难以发现得
多。
现在我想再为大家介绍另一种力——弱相互作用力。其实,
就它的内禀强度而言,它并不比电力和磁力弱;它之所以显得弱,
是因为它的作用距离甚至比强力还要更短:只有10-17米。 不过,
虽然它的作用距离受到这样大的限制,它在自然界中却扮演着重
要的角色。我们可以举一条核反应链作为例子,这就是氢(H)
能够聚合变成氦(He),同时释放出能量。这些核反应发生在
太阳上,并且是太阳的能源。在下面几个反应中,第一个反应就
是由弱相互作用引起的:
p+p→2H+e++νe
2H+p→3He+γ
3He+3He→4He+p+p
式中γ是名叫γ射线的高能光子,2H是由一个质子和一个中子
组成的氘核,而νe是中微子。
弱力也是自由中子发生衰变的原因:
n→p+e-+νe-
式中νe-是反中微子。
顺便说一下,你们大概会觉得奇怪,这一切关于“作用力”
的议论,难道同粒子的相互转变有什么关系吗?也许我应该说明,
只要有粒子彼此产生影响(不管是以什么方式产生的),物理学
家们就总是把它说成“作用力”或“相互作用”所产生的结果。
这种说法不但适用于运动发生变化的场合(即我们日常想到有某
种力在起作用时),而且也适用于粒子改变其身份的场合。
前面我已经提到过,与强子不同,无论是电子还是中微子都
不感受强力的作用,这是因为它们都不带有色荷。中微子甚至也
不感受电力的作用——它不带任何电荷,中微子从来不同其他粒
子相互作用这个事实表明,我们必须考虑另一种类型的相互作用
——弱相互作用力。
我们说,e和νe是“电子型轻子”,它们的电子型轻子数
等于+1,其中每一种粒子分别有其反粒子e+和νe-,后者
的电子型轻子数等于-1。就像在强子的场合下重子数B必须守
恒那样,轻子数这个量子数在相互作用中也是守恒的,不信的话,
你们可以核对一下前面那几个反应式。在谈到弱相互作用力时,
由于e和νe具有相同的轻子数,它们之间并没有任何差异。
那么,我们为什么说它们是电子型轻子呢?原因在于,自然
界中还有μ子和μ子型中微子,以及τ子和τ子型中微子。这些
粒子各有它们那种类型的轻子数,后者在反应中也必须守恒。这
样一来,我们就可以想到,这些轻子组成了3种双重态。
夸克也组成双重态。正如我们先前所说,质子和中子组成一
种同位旋双重态(即同一种粒子——核子——的不同带电状态),
所以,组成p和n的u夸克和d夸克也组成一种双重态。其他夸
克也是这样:s和c组成一种双重态,t和b组成另一种。
事实上,在夸克的同位旋双重态与轻子的“弱同位旋”双重
态之间存在着一种联系:它们一起组成了3个代,如表2所示。
表2 夸克双重态和轻子双重态的3个代
————————————————————————————
代 第一代 第二代 第三代 电荷
————————————————————————————
夸克 u c t 2/3
d s b -1/3
————————————————————————————
轻子 e- μ- τ- -1
νe νμ ντ 0
————————————————————————————
像强相互作用那样,在弱相互作用中,电荷、重子数和轻子
数这些量子数也总是守恒的。但是,与强相互作用不同,在弱相
互作用中,夸克的味不必守恒。因此,举例来说,中子(u,d,
d)衰变成质子(u,u,d),是因为中子的一个d夸克改变
了自己的味而变成稍稍轻一点的u夸克,同时发射出多余的能量。
对于带有t、b、c、s等夸克的强子来说,情况也是这样。这
些强子一旦在高能碰撞中产生,它们的t、b、c、s等夸克立
即转变成不同味的较轻夸克。例如,奇异粒子Λ0(s,u,d)
的衰变
Λ0→p+π-
就是由于它的s夸克转变成u夸克。这正是新产生的粒子不可能
长期存在的原因:它们一产生出来,便马上衰变成比较轻的粒子。
这也正是为什么组成我们这个世界的物质几乎全部由两种最轻的
夸克u和d加上电子构成的原因。
为了进一步认识弱相互作用力,我们得稍稍回顾一下前面所
走过的路。当我第一次谈到自然界中不同的作用力时,我是把电
力和磁力分开的。这确实是它们最初被观察到的情况——它们表
现为不同类型的力。19世纪60年代,正在奋力工作的天才麦克斯
韦把当时已知的全部电现象和磁现象收集在一起,并且认识到它
们全都可以用一种单一的力——电磁力——来加以解释。
但是,这种对不同的力进行统一的过程并没有就此停止。温
伯格(1967年)和萨拉姆(1968年)在格拉肖早期工作的基础上,
成功地建立了一个优美的理论,把电磁力和弱相互作用力看做是
一个单一的力——电弱力——的不同表现形式,从而把它们统一
起来。
要想能够做到这一点,就必须假定弱力像我们已经讨论过的
其他力一样,也是通过交换某种粒子来传递的。温伯格他们的理
论预言说,起这种作用的粒子有3种,即W+粒子、W-粒子和
Z0粒子。但是在当时,这3种粒子都还没有发现过。
1983年,由于成功地发现了这些粒子,上述理论被证明获得
了全胜。同其他新粒子一样,这3种粒子也是不稳定的,比方说,
它们会按照下面的方式衰变:、
W-→e-+νe 或 Z0→νe+νe-
Z0粒子的衰变特别有趣,它不仅能衰变成(νe+νe-),
而且还能衰变成(νμ+νμ-)、(ντ+ντ-),或除当
时已知的3种中微子以外,可能存在的其他类型的中微子-反中
微子对。Z0粒子的衰变渠道越多,它就会衰变得越快。这样一
来,Z0粒子的寿命就提供了一种灵敏有效的手段,可以确定究
竟会有多少种中微子-反中微子组合。对Z0粒子寿命的测量表
明,实际上只有3种中微子,也就是我们已经发现的那3种。由
此可以作出结论说,轻子的双重态也只有3种。
不仅如此,由于轻子双重态同夸克双重态组成3个代,我们
就有理由推论说,夸克双重态大概也只有3种。换句话说,夸克
的味只限于6种。这是非常重要的。夸克一直有一种令人困惑的
特点,那就是每一种新发现的夸克总要比其先行者更重一些,次
序是:u(5 MeV),d(10 MeV),s(180 MeV),c(1.6
GeV),b(4 GeV),t(180 GeV)。 较重的夸克意味着由它
构成的强子也会比较重,而强子越重,也就越难以产生。这就引
起了人们的关注:是不是可能还有一些未知的味,我们之所以从
来没有发现它们,只不过是因为从物理上说,我们还不拥有足够
产生它们的能源(在高能物理学的预算里,耗尽地球的全部国民
生产总值之前,我们还能建造成多大的同步回旋加速器呢)?不
过,感谢Z0粒子的帮忙,目前这个问题已经不复存在了,我们
完全有理由相信,自然界中只存在我们已经发现的6种味。
因此,基本粒子一览表就变成这样了:
(i) 6种夸克和6种轻子;
(ii) 12种中介粒子,其中包括8种胶子、光子、W粒子
和Z0粒子。
这样一来,我们便得到了粒子物理学的所谓标准模型——这
个理论概括了我们所提到的一切构成自然界的组成部分和它们之
间的作用力。到今天为止,所有已经做过的实验都同这个理论相
一致。
那么,将来会怎样呢?
有一条重要的研究路线是打算把各种力统一起来。正如电力
和磁力首先得到统一,然后这个合成的电磁力又和弱力联合在一
起那样,也许有朝一日,人们会认识到,电弱力和强力也是一种
共同的相互作用的不同表现形式。目前已经发现,当能量变得越
来越高时,强力和弱力的强度却会降低,而电磁力的强度却会增
大,它们似乎将在某一点上会聚起来。按照当前流行的理论,当
能量达到1015 Gev左右时,所有这几种力将有可相比拟的强度。
如果这一点被证明是正确的,那么我们就会知道,我们所碰到的
是一种单一的大统一力(我觉得这个名称有点太过分了,但是,
人们就是这样称呼那种力的)。
这里有一个问题:1015 GeV是永远无望在实验室里产生的能
量(能产生这种能量的同步回旋加速器将是太大太大了)。目前
我们所能达到的能量极限是103GeV。但是,希望仍然存在。尽管
这样高的能量条件是无法达到的,人们依旧期望在普通能量条件
下能出现一些有价值的剩余效应。
例如,有人曾提出一种使质子经过很长时间进行衰变的理论
方案,其衰变的模式是
p→e++π0
目前,人们正在寻找质子有没有这种不稳定性的表现,但直到今
天,还没有一个人发现它。尽管如此,大家还是认为研究质子的
衰变,可能是我们在不必再现超高能的条件下,能够探索大统一
的方方面面的一种办法。
但是我应该指出,虽然我们不能在实验室里创造这种超高能
的条件,然而这样的条件却曾经一度出现过。我指的是紧接着大
爆炸的瞬间,宇宙所出现的状态。在那个时候,宇宙是由各种基
本粒子密集混合而成的,这些粒子一面进行随机运动,一面互相
碰撞。当时的温度极高,也就是说,粒子的碰撞可以用我们刚才
提到的那种异常高的能量来加以描述。
因此,我们可以想象到,在宇宙的早期状态中(这里的“早
期,是指大爆炸后大约10-32秒内),温度为10 27 K,而能量为
1015 GeV。那时,强力、电磁力和弱力全都具有相同的强度。此
后,由于宇宙发生膨胀,它便逐渐冷却下来。这时可用于进行碰
撞的能量比较小,并且比较难以产生较重的粒子。这又意味着,
各种不同的作用力开始获得它们的特殊性。我们把这种情形称为
对称自发破缺。
让我来作个类比吧!当水冷却到冰点以下时,它就会发生相
变,形成冰晶体。尽管在液体的条件下,所有方向都是等效的,
但晶体却有非常确定的晶轴。这就是说,在结晶的过程中,它必
须在空间选定某些方向作为晶轴的方向。不过,这些方向并没有
任何特殊意义,因为它们的选择是非常任意的。在水中某个地方
形成的第二块晶体几乎必然会采取某种别的取向。因此,虽然晶
轴是晶体的一个非常明显的特点,但是它们的取向并没有任何根
本性的意义。它们只不过是掩盖了这样一个事实,即在基本的水
准上,所有的方向都是等效的,具有完美的旋转对称性。我们说,
水的这种原有的对称性变得无规了,或者说它“自发破缺”了,
现在对称性完全隐藏起来了。
作用力的情况也是这样。当相互作用粒子的混合物冷却下来
时,它同样经历了某种“相变”。这时强力、弱力和电磁力的十
分不同的特点变得非常显著——正是这种差异,使这些力在我们
最常碰到的低能条件下显得如此各不相同。但是我已经说过,这
些差异并没有什么重要的意义,我们不应该被它们所蒙蔽而看不
见这些力共有的基本对称性——大统一力的对称性。
遗憾的是,我知道我的时间快用完了。我可以介绍的东西还
很多。例如,关于基本粒子为什么会得到它们所具有的质量的问
题,我还完全没有谈到。另一个叫人入迷的话题是有关磁单极子。
大家都知道,你无法把磁棒折断成两半而产生磁单极子,然而,
这并不妨碍我们用别的办法去产生它。这种可能性是狄喇克最先
提出的,目前大统一理论也在预言磁单极子的存在。
至于如何扩展标准模型的范畴,有个名叫超对称性的理论看
起来很有前途。它提出一个问题:如果把被交换的中介粒子(如
胶子、光子、W粒子和Z0粒子)当作一方,而把进行交换的粒
子(夸克和轻子)当作另一方,那么,这双方之间的差别是不是
真的像我们过去所表达的那么泾渭分明?
最后,我还想提一提超弦的问题,这种理论认为,基本粒子
(夸克和轻子)虽然表现得好像是点状物,但它们事实上并不是
点,而是非常微小的“弦”。预计它们小得无法置信,其长度不
大于10-34米,但却起着非常重要的作用, 它们并不是我们过去
所想象的那种简单的点。
大家都知道,现在我门正带着最后这几个课题到臆想王国中
去闯荡。其中是不是有哪个理论在将来某个时候会得到认可,并
像今天的标准模型那样成为定论呢?对此,目前谁也不敢说什么。
我们只有拭目以待。
(乔治·伽莫夫、罗素·斯坦纳德《物理世界奇遇记》最新版,湖南教育出版社2000年)
|